Physics 101 Formula Sheet – Digital format draft

Last updated 11/28/2023

Click the links in the Table of Contents to go directly to the relevant topic.

Contents

Physics 101 Formula Sheet	1
Constants	2
Useful conversions	2
Greek letter variable names	2
Linear Equations	3
Kinematics	3
Dynamics	3
Work and Energy	3
Impulse and Momentum	3
Rotational Equations	4
Conversion between linear and rotational quantities	4
Rotational Kinematics	4
Rotational Statics and Dynamics	4
Rotational Energy and Angular Momentum	4
Moments of Inertia (I)	4
Fluids	5
Heat and Thermodynamics	5
Temperature	5
Heat	5
Ideal Gas Law and Kinetic Theory	5
Simple Harmonic Motion	е
Springs	є
Simple Pendulums	є
Mayor and Sound	6

Constants

 $g = 9.8 \text{ m/s}^2$ (near Earth's surface)

 $G = 6.7 \times 10^{-11} \,\mathrm{N} \cdot \mathrm{m}^2/\mathrm{kg}^2$ (Universal Gravitational Constant)

 $\rho_{water} = 1000 \text{ kg/m}^3$

 $v_{sound,air} = 343 \text{ m/s}$ (speed of sound in air)

 $v_{light} = 3 \times 10^8 \text{ m/s}$ (speed of electromagnetic wave in vacuum)

 $N_A = 6.022 \times 10^{23}$ molecules/mole (Avogadro's number)

 $R = 8.31 \text{ J/(mol \cdot K)}$ (Ideal gas constant)

 $k_B = \frac{R}{N_A} = 1.38 \times 10^{-23} \text{ J/K (Boltzmann constant)}$

 $\sigma = 5.67 \times 10^{-8} \text{ J/(s} \cdot \text{m}^2 \cdot \text{K}^4)$ (Stefan-Boltzmann constant)

Useful conversions

Change of an arbitrary quantity x: $\Delta x = x_{final} - x_{initial}$

Period and frequency: $\omega = 2\pi f$ $T = \frac{1}{f}$

Units of pressure: $1 \text{ atm} = 1.01 \times 10^5 \text{ Pa}$ $1 \text{ Pa} = 1 \text{ N/m}^2$

Units of volume: $1 \text{ m}^3 = 1000 \text{ liters}$

Area of a circle of radius r: $A = 2\pi r^2$

Volume of a sphere of radius r: $V = \frac{4}{3}\pi r^3$

Surface area of a sphere of radius r: $A = 4\pi r^2$

Fahrenheit (T_F) to Celsius (T_C) : $T_C = \frac{5}{9}(T_F - 32^\circ)$

Celsius (T_C) to Kelvin (T_K): $T_K = T_C + 273.15$

Greek letter variable names

 α – alpha (use: angular acceleration, linear expansion) τ – tau (use: torque)

 β – beta (use: volume expansion) ϕ – phi (use: angle)

 θ – theta (use: angle, angular displacement) ω – omega (use: angular speed, angular frequency)

 λ – lambda (use: wavelength) Δ – delta (use: to represent change in a variable)

 μ – mu (use: coefficient of friction, linear density) Σ – Sigma (use: the sum of the variable that follows)

 π – pi (use: as a constant) σ – sigma (use: as a constant)

 ρ – rho (use: volume density) κ – kappa (use: as a constant)

Linear Equations

Kinematics

$$v_{avg} \equiv \frac{\Delta x}{\Delta t}$$
 $a_{avg} \equiv \frac{\Delta v}{\Delta t}$

$$v = v_0 + at$$

$$x = x_0 + v_0 t + \frac{1}{2} a t^2$$

$$v^2 = {v_0}^2 + 2a\Delta x$$

Centripetal acceleration around a circular path of radius R: $a_c = \frac{v^2}{R} = \omega^2 R$

Dynamics

Newton's 2nd Law: $\Sigma \vec{F} = m \vec{a}$ x direction: $\Sigma F_{\chi} = m a_{\chi}$ y direction: $\Sigma F_{y} = m a_{y}$

Force definitions (magnitudes):

Weight near the surface of Earth: W = mg

Friction: $f_{s,max} = \mu_s F_N$ $f_k = \mu_k F_N$

Spring force for a stretch x from equilibrium: $\vec{F}_{\rm S} = -k\vec{x}$

Work and Energy

Work done by a force F across a distance d: $W \equiv Fd \cos \theta$

Kinetic energy: $K \equiv \frac{1}{2}mv^2 = \frac{p^2}{2m}$

Gravitational potential energy near Earth's surface: $U_g = mgy$

Spring potential energy: $U_S = \frac{1}{2}kx^2$

Work-Kinetic Energy theorem: $W_{total} = \Delta K$

Definition of mechanical energy: E = K + U

Effect of non-conservative work on mechanical energy: $W_{nc} = \Delta E$

Definition of Power: $P \equiv \frac{W}{t}$

Impulse and Momentum

Definition of momentum: $\vec{p} \equiv m\vec{v}$

Impulse: $\vec{I} = \overrightarrow{\Delta p} = \vec{F}_{ava} \Delta t$

 $\Sigma \vec{F}_{ext} \Delta t = \Delta \vec{P}_{total}$ x direction: $\Sigma \vec{F}_{ext,x} \Delta t = \Delta \vec{P}_{total,x}$ y direction: $\Sigma \vec{F}_{ext,y} \Delta t = \Delta \vec{P}_{total,y}$

When $\Sigma \vec{F}_{ext} = 0$ momentum is conserved

Return to Table of Contents

Rotational Equations

Conversion between linear and rotational quantities

For rotating objects: x, v, and a describe translational values at some radius RFor objects rolling without slipping: x, v, and α describe center of mass values

$$\Delta x = R\Delta \theta$$

$$v = R\omega$$

$$a = R\alpha$$

1 revolution = 2π radians

Location of center of mass: $x_{cm} = \frac{m_1\vec{x}_1 + m_2\vec{x}_2 + \cdots}{m_1 + m_2 + \cdots}$

Rotational Kinematics

$$\omega_{avg} \equiv \frac{\Delta \theta}{\Delta t}$$
 $\alpha_{avg} \equiv \frac{\Delta \omega}{\Delta t}$

$$\alpha_{avg} \equiv \frac{\Delta a}{\Delta t}$$

$$\omega = \omega_0 + \alpha t$$

$$\theta = \theta_0 + \omega_0 t + \frac{1}{2} \alpha t^2$$

$$\omega^2 = \omega_0^2 + 2\alpha\Delta\theta$$

Rotational Statics and Dynamics

Newton's 2nd Law: $\Sigma \vec{\tau} = I \vec{\alpha}$

When $\Sigma \vec{\tau} = 0$ and $\Sigma \vec{F} = 0$ the object is in static equilibrium

Torque definition (magnitude): $\tau \equiv Fr \sin \theta$

Work done by a torque: $W = \tau \Delta \theta$

Rotational Energy and Angular Momentum

Rotational Kinetic energy: $K_{rot} \equiv \frac{1}{2}I\omega^2 = \frac{L^2}{2I}$

Total Kinetic energy: $K_{total} = K_{trans} + K_{rot} = \frac{1}{2}mv^2 + \frac{1}{2}I\omega^2$

Definition of angular momentum: $\vec{L} \equiv I\vec{\omega}$

Impulse: $\vec{I} = \overrightarrow{\Delta p} = \vec{F}_{ava} \Delta t$

 $\Sigma ec{ au}_{ext} \Delta t = \Delta ec{L}_{total}$ When $\Sigma ec{ au}_{ext} = 0$ angular momentum is conserved

Moments of Inertia (I)

Parallel axis theorem: $I = I_0 + Mh^2$

 $I = \frac{2}{3}MR^2$ (hollow sphere or ball)

 $I = \Sigma mr^2$ (collection of point particles)

 $I = MR^2$ (hoop or hollow cylinder)

 $I = \frac{1}{2}MR^2$ (solid disk or cylinder)

 $I = \frac{1}{12}ML$ (uniform rod about **center**)

 $I = \frac{2}{5}MR^2$ (solid sphere or ball)

 $I = \frac{1}{2}ML^2$ (uniform rod about **one end**)

Return to Table of Contents

Fluids

Definition of pressure: $P \equiv \frac{F}{A}$

Definition of density: $\rho \equiv \frac{m}{V}$

Pressure at a depth d below a point with pressure P_0 : $P = P_0 + \rho g d$

Force definition: Buoyant force (magnitude) $F_B = W_{displaced\ fluid} =
ho_{fluid} g V_{displaced}$

Volume flow rate: Q = vA

Flow continuity equation: $v_1A_1 = v_2A_2$

Bernoulli equation: $P_1 + \frac{1}{2}\rho v_1^2 + \rho g y_1 = P_2 + \frac{1}{2}\rho v_2^2 + \rho g y_2$

See Constants and Conversions

Heat and Thermodynamics

Temperature

Convert from degrees Fahrenheit (T_F) to degrees Celsius (T_C): $T_C = \frac{5}{9}(T_F - 32^\circ)$

Convert from degrees Celsius (T_C) to Kelvin (T_K): $T_K = T_C + 273.15$

Thermal expansion: $\Delta L = \alpha L_0 \Delta T$ $\Delta V = \beta V_0 \Delta T$ $(\beta = 3\alpha)$

Heat

First law of thermodynamics: $\Delta U = Q + W$

Specific heat capacity: $Q = cM\Delta T$

Latent heat of fusion (solid \leftrightarrow liquid): $Q = L_f M$ Latent heat of vaporization (liquid \leftrightarrow gas): $Q = L_v M$

Rate of heat transfer by conduction (magnitude): $H = \frac{Q}{t} = \frac{\kappa A (T_{hot} - T_{cold})}{L}$

Rate of heat transfer by radiation: $H = \frac{Q}{t} = e\sigma T^4 A$ $\sigma = 4.67 \times 10^{-8} \text{ J/(s} \cdot \text{m}^2 \cdot \text{K}^4)$

Net heat transfer rate by a radiating object in an environment with T_0 : $P_{net} = e\sigma A (T^4 - T_0^4)$

Ideal Gas Law and Kinetic Theory

$$PV = nRT = Nk_BT$$
 (see Constants)

For monatomic gases: $K_{avg} = \frac{3}{2}k_BT = \frac{1}{2}mv_{rms}^2$ $U = \frac{3}{2}Nk_BT = \frac{3}{2}nRT$

Simple Harmonic Motion

Springs

Force exerted by a stretched spring (Hooke's Law): $\vec{F}_S = -k\vec{x}$

Potential energy stored in a stretched spring: $U_s = \frac{1}{2}kx^2$

Angular frequency:
$$\omega = \sqrt{\frac{k}{m}}$$

Period:
$$T = \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{m}{k}}$$

Equations of motion (depend on initial conditions):

Common option 1:

$$x(t) = A\cos(\omega t)$$

$$x(t) = A\sin(\omega t)$$

$$v(t) = -A\omega\sin(\omega t)$$

$$v(t) = A\omega\cos(\omega t)$$

$$a(t) = -A\omega^2 \cos(\omega t)$$

$$a(t) = -A\omega^2 \sin(\omega t)$$

Maximum values:
$$x_{max} = A$$

$$v_{max} = Aa$$

$$v_{max} = A\omega$$
 $a_{max} = A\omega^2$

Simple Pendulums

Angular frequency:
$$\omega = \sqrt{\frac{g}{L}}$$

Period:
$$T = 2\pi \sqrt{\frac{L}{g}}$$

Waves and Sound

Speed of a wave on a string:
$$v = \sqrt{\frac{F_T}{m/L}}$$

Relationship between speed, wavelength, and frequency: $v=\lambda f$

Resonator wavelengths:

Resonator with nodes at both ends:
$$\lambda_n = \frac{2}{n}L$$
 $(n = 1,2,3,...)$

Resonator with a node at one end, antinode on the other: $\lambda_n = \frac{4}{n}L$ (n = 1,3,5,...)

Sound intensity: $I = \frac{P}{4\pi r^2}$

Loudness:
$$\beta = (10 \text{ dB}) \log_{10} \left(\frac{I}{I_0}\right)$$

Loudness: $\beta = (10 \text{ dB}) \log_{10} \left(\frac{I}{I_0}\right)$ Change in loudness: $\beta_2 - \beta_1 = (10 \text{ dB}) \log_{10} \left(\frac{I_2}{I_0}\right)$

[Converting with log base ten: $x = \log_{10}(y) \leftrightarrow y = 10^x$]

Frequency shift due to Doppler Effect:

$$f_{observer} = \left(\frac{v_{sound} \pm v_{observer}}{v_{sound} \mp v_{source}}\right) f_{source}$$

In the numerator:

Use + if the observer moves toward the source Use — if the observer moves away from the source In the denominator:

Use — if the source moves toward the observer

Use + if the source moves away from the observer