EXAM II

Physics 101: Lecture 12 Collisions and Explosions

- Today's lecture covers Textbook Sections 7.5-7.8

Physics 101: Lecture 12, Pg 1

Overview of Semester

- Newton's Laws

$$
\Rightarrow \mathrm{F}_{\mathrm{Net}}=\mathrm{ma}=\Delta \mathrm{p} / \Delta \mathrm{t}
$$

- Work-Energy
$\Rightarrow \mathrm{F}_{\text {Net }}=\mathrm{ma} \quad$ multiply both sides by d
$\Rightarrow \mathrm{W}_{\text {Net }}=\Delta \mathrm{K} \quad$ Energy is "conserved"
\rightarrow Useful when know Work done by forces
- Momentum Conservation
$\Rightarrow \mathrm{F}_{\mathrm{Net}} \Delta \mathrm{t}=\Delta \mathrm{p}$
$\Rightarrow \mathrm{F}_{\text {Net }}=0 \Rightarrow \Delta \mathrm{p}=0$ Momentum is "conserved"
\Rightarrow Works in each direction independently

Collisions

Procedure

- Draw "before", "after"
- Define system so that $F_{\text {ext }}=0$
- Set up axes
- Compute $P_{\text {total }}$ "before"
- Compute Ptotal "after"
- Set them equal to each other

ACT

A railroad car is coasting along a horizontal track with speed V when it runs into and connects with a second identical railroad car, initially at rest. Assuming there is no friction between the cars and the rails, what is the speed of the two coupled cars after the collision?
A. V
B. V/2
C. V/4
D. 0

ACT

What physical quantities are conserved in the above collision?
A. Only momentum is conserved
B. Only total energy is conserved
C. Both are conserved
D. Neither are conserved

Checkpoint questions $1 \& 2$

Is it possible for a system of two objects to have zero total momentum and zero total kinetic energy after colliding, if both objects were moving before the collision?

1. YES
2. NO

Ballistic Pendulum

A projectile of mass m moving horizontally with speed v strikes a stationary mass M suspended by strings of length L. Subsequently, $m+M$ rise to a height of H.
Given H, M and m what is the initial speed v of the projectile?

Collision Conserves Momentum

$0+\mathrm{m} \underline{\mathrm{v}}=(\mathrm{M}+\mathrm{m}) \mathrm{V}$

demo

After, Conserve Energy
$1 / 2(M+m) V^{2}+0=0+(M+m) g H$
$\mathrm{V}=\operatorname{sqrt}(2 \mathrm{~g} \mathrm{H})$

Explosions

$A=1, B=2, C=$ same

$$
m_{2} \xrightarrow{v_{2}} \text { "after" }
$$

- Example: $m_{1}=M / 3 \quad m_{2}=2 M / 3$
- Which block has larger |momentum|?
* Each has same |momentum|

$$
\begin{aligned}
& 0=p_{1}+p_{2} \\
& p_{1}=-p_{2}
\end{aligned}
$$

- Which block has larger speed?
* mv same for each \Rightarrow smaller mass has larger velocity
- Which block has larger kinetic energy?
* $\mathrm{KE}=\mathrm{mv}^{2} / 2=\mathrm{m}^{2} \mathrm{v}^{2} / 2 \mathrm{~m}=\mathrm{p}^{2} / 2 \mathrm{~m}$
* \Rightarrow smaller mass has larger KE
- Is mechanical (kinetic) energy conserved?

Collisions or Explosions in Two Dimensions

before

after

- $P_{\text {total, } x}$ and $P_{\text {total, } y}$ independently conserved

$$
\begin{aligned}
& P_{\text {total, } x, \text { before }}=P_{\text {total, } x, \text { after }} \\
& P_{\text {total, } y, \text { before }}=P_{\text {total, }, \text {, after }}
\end{aligned}
$$

Explosions ACT

Center of Mass

$$
\begin{aligned}
& \vec{r}_{c m}=\frac{m_{1} \vec{r}_{1}+m_{2} \vec{r}_{2}}{\sum m_{i}} \quad \text { Center of Mass = Balance poin } \\
& \text { oShown is a yummy doughnut. Where } \\
& \text { would you expect the center of mass of } \\
& \text { this breakfast of champions to be located? }
\end{aligned}
$$

Typical wrong answer:
evenly distributed around the doughnut
in my stomach
doughnuts don't have a center of mass because they are removed and sold as doughnut hole

Center of Mass

$$
P_{\text {tot }}=M_{\text {tot }} V_{c m} \quad F_{\text {ext }} \Delta t=\Delta P_{\text {tot }}=M_{\text {tot }} \Delta V_{c m}
$$

So if $\mathrm{F}_{\text {ext }}=0$ then V_{cm} is constant

Also: $F_{\text {ext }}=M_{\text {tot }} a_{c m}$

Center of Mass of a system behaves in a SIMPLE way

- moves like a point particle!
- velocity of CM is unaffected by collision if $F_{\text {ext }}=0$
(pork chop demo)

Summary

- Collisions and Explosions
-Draw "before", "after"
-Define system so that $\mathrm{F}_{\text {ext }}=0$
- Set up axes
-Compute $\mathrm{P}_{\text {total }}$ "before"
-Compute $\mathrm{P}_{\text {total }}$ "after"
- Set them equal to each other
- Center of Mass (Balance Point)

$$
\vec{r}_{c m}=\frac{m_{1} \vec{r}_{1}+m_{2} \vec{r}_{2}}{\sum m_{i}}
$$

