Physics 101: Lecture 13 Rotational **Kinetic Energy** and **Rotational** Inertia

Overview of Semester

- Newton's Laws
 - \rightarrow $F_{\text{Net}} = m a$
- Work-Energy
 - → F_{Net} = m a multiply both sides by d
 → W_{Net} = ΔKE Energy is "conserved"
 → Useful when know Work done by forces
- Impulse-Momentum
 - \Rightarrow F_{Net} = m a = $\Delta p / \Delta t$
 - \rightarrow Impulse = Δp
 - Momentum is conserved
 - Works in each direction independently

Linear and Angular Motion

	Linear	Angular
Displacement	X	θ
Velocity	V	ω
Acceleration	a	α
Inertia	m	Ι
KE	¹ ∕₂ m v ²	Today!
Newton's 2 nd	F=ma	
Momentum	p = mv	

Comment on axes and sign (i.e. what is positive and negative)

Whenever we talk about rotation, it is implied that there is a rotation "axis".

This is usually called the "z" axis (we usually omit the z subscript for simplicity).

Counter-clockwise (increasing θ) is usually called positive.

Clockwise (decreasing θ) is usually called negative. [demo]

 $+\omega$

Energy ACT/demo

• When the bucket reaches the bottom, its potential energy has decreased by an amount mgh. Where has this energy gone? A) Kinetic Energy of bucket B) Kinetic Energy of flywheel C) Both 1 and 2.

Rotational Kinetic Energy
 Consider a mass M on the end of a string being spun around in a circle with radius r and angular frequency [demo]

Mass has speed v = or
Mass has kinetic energy
K = ½ M v²

 $= \frac{1}{2} M \omega^2 r^2$

$$= \frac{1}{2} (M r^2) \omega^2$$

$$\gg$$
 = $\frac{1}{2}$ I ω^2

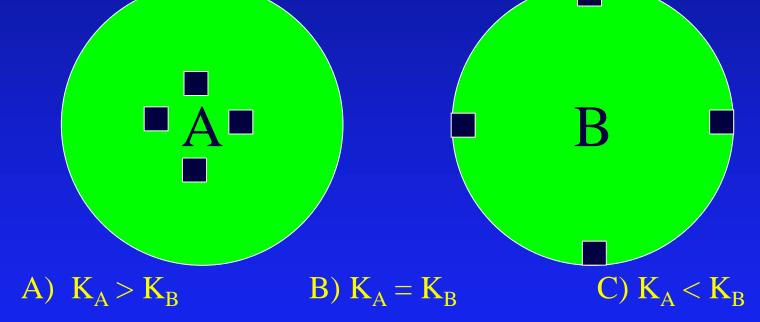
 Rotational Kinetic Energy is energy due to circular motion of object.
 Physics 101: Lecture 13, Pg 6

Rotational Inertia I

Tells how much "work" is required to get object spinning. Just like mass tells you how much "work" is required to get object moving.
 → K_{tran} = ½ m v² Linear Motion
 → K_{tran} = ½ I ω² Rotational Motion

• $I = \Sigma m_i r_i^2$ (units kg m²)

 Note! Rotational Inertia (or "Moment of Inertia") depends on what you are spinning about (basically the r_i in the equation).


Rotational Inertia Table

For objects with finite number of masses, use I = Σ m r². For "continuous" objects, use table below (p. 263 of book).

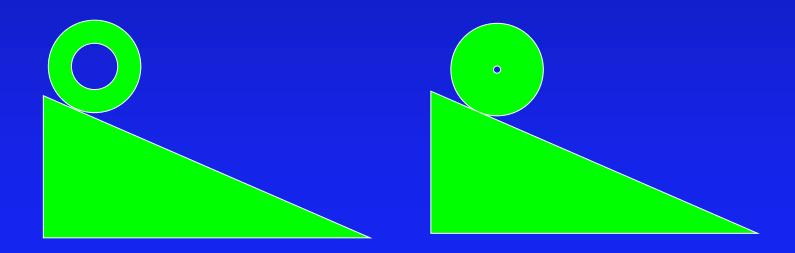
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Table 8.1									
Rotational Inertia for Uniform Objects with Various Geometrical Shapes									
Shape		Axis of Rotation	Rotational Inertia	Shape		Axis of Rotation	Rotational Inertia		
Thin hollow cylindrical shell (or hoop)		Central axis of cylinder	MR ²	Solid sphere		Through center	$\frac{2}{5}MR^2$		
Solid cylinder (or disk)		Central axis of cylinder	$\frac{1}{2}MR^2$	Thin hollow spherical shell		Through center	$\frac{2}{3}MR^2$		
Hollow cylindrical shell or disk	Top view	Central axis of cylinder	$\frac{1}{2}M(a^2+b^2)$	Thin rod		Perpendicular to rod through end	$\frac{1}{3}ML^2$		
				Rectangular plate		Perpendicular to plate through center	$\frac{1}{12}M(a^2+b^2)$		

Merry Go Round

Four kids (mass m) are riding on a (light) merry-go-round rotating with angular velocity $\omega=3$ rad/s. In case A the kids are near the center (r=1.5 m), in case B they are near the edge (r=3 m). Compare the kinetic energy of the kids on the two rides.

Inertia Rods

Two batons have equal mass and length. Which will be "easier" to spin


A) Mass on endsB) SameC) Mass in center

Checkpoint: Rolling Race (Hoop vs Cylinder)

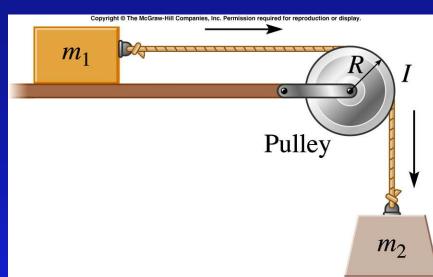
A solid and hollow cylinder of equal mass roll down a ramp with height h. Which has greatest KE at bottom?A) Solid B) Hollow C) Same

Prelecture: Rolling Race (Hoop vs Cylinder)

A solid and hollow cylinder of equal mass roll down a ramp with height h. Which has greatest speed at the bottom of the ramp? A) Solid B) Hollow C) Same 50% 17% 33% 0

Main Ideas

Rotating objects have kinetic energy KE = ½ I ω²


Moment of Inertia I = Σ mr² Depends on Mass Depends on axis of rotation

• Energy is conserved but need to include rotational energy too: $K_{rot} = \frac{1}{2} I \omega^2$

Massless Pulley Example

Consider the two masses connected by a pulley as shown. Use conservation of energy to calculate the speed of the blocks after m_2 has dropped a distance h. Assume the pulley is massless.

$$E = K + U$$

Note: Tension does positive work on

1 and negative work on 2. Net work

) by tension is ZERO.

$$E_0 = E_f$$

$$U_{initial} + K_{initial} = U_{final} + K_{final}$$

$$0 + 0 = -m_2gh + \frac{1}{2}m_1v^2 + \frac{1}{2}m_2v^2$$

$$2^{m_1}$$
 2^{m_2} (on 1 and 2

$$2m_2gh = m_1v^2 + m_2$$
$$v = \sqrt{\frac{2m_2gh}{2m_2gh}}$$

 $\langle m_1 + m_2 \rangle$

Massive Pulley Act

Consider the two masses connected by a pulley as shown. If the pulley is massive after m2 drops a distance h, the blocks will be moving

A) faster than

C) slower than

V

 m_1

if it was a massless pulley

B) the same speed as

$$U_{initial} + K_{initial} = U_{final} + K_{final}$$

$$m_2gh = +\frac{1}{2}m_1v^2 + \frac{1}{2}m_2v^2 + \frac{1}{4}Mv^2$$

$$0 = -m_2gh + \frac{1}{2}m_1v^2 + \frac{1}{2}m_2v^2 + \frac{1}{2}I\omega^2$$

 $m_2gh = +\frac{1}{2}m_1v^2 + \frac{1}{2}m_2v^2 + \frac{1}{2}\left(\frac{1}{2}MR^2\right)\left(-\frac{1}{2}m_2v^2 + \frac{1}{2}\left(\frac{1}{2}MR^2\right)\right) + \frac{1}{2}m_1v^2 + \frac{1}{2}m_2v^2 +$

$$=\sqrt{\frac{2m_2gh}{m_1+m_2+M/2}}$$

m

• Rotational Kinetic Energy $K_{rot} = \frac{1}{2} I \omega^2$

• Rotational Inertia $I = \Sigma m_i r_i^2$

• Energy Still Conserved!