Physics 101: Lecture 15 Rolling Objects

Today's lecture will cover Textbook Chapter 8.5-8.7

Physics 101: Lecture 15, Pg 1

Overview

- Review
$\Rightarrow \mathrm{K}_{\text {rotation }}=1 / 2 \mathrm{I} \omega^{2}$
\Rightarrow Torque $=$ Force that causes rotation

$$
\tau=\mathrm{Fr} \sin \theta
$$

\Rightarrow Equilibrium

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{Net}}=0 \\
& \tau_{\mathrm{Net}}=0
\end{aligned}
$$

- Today
$\Rightarrow \tau_{\text {Net }}=\mathrm{I} \alpha$ (rotational $\mathrm{F}=\mathrm{ma}$)
\Rightarrow Energy conservation revisited

Linear and Angular

	Linear	Angular
Displacement	x	θ
Velocity	v	ω
Acceleration	a	α
Inertia	m	I
KE	$1 / 2 \mathrm{~m} v 2$	$1 / 2 \mathrm{I} \omega^{2}$
N2L	$\mathrm{F}=\mathrm{ma}$	$\tau=\mathrm{I} \alpha$
Momentum	$\mathrm{p}=\mathrm{mv}$	$\mathrm{L}=\mathrm{I} \omega$

Rotational Form Newton's $2^{\text {nd }}$ Law

- $\tau_{\text {Net }}=\mathrm{I} \alpha$
\Rightarrow Torque is amount of twist provide by a force » Signs: positive = CCW
\rightarrow Moment of Inertia like mass. Large I means hard to start or stop from spinning.
- Problems Solved Like Newton's 2nd
\rightarrow Draw FBD
\Rightarrow Write Newton's $2^{\text {nd }}$ Law

Falling weight \& pulley

- A mass m is hung by a string that is wrapped around a pulley of radius R attached to a heavy flywheel. The moment of inertia of the pulley + flywheel is I. The string does not slip on the pulley.
Starting at rest, how long does it take for the mass to fall a distance L.

What method should we use to solve this problem?
A) Conservation of Energy (including rotational)
B) $\tau_{\text {Nel }}=I \alpha$ and then use kinematics

Since it asks for time, we will use B.

Falling weight \& pulley...

- For the hanging mass use $F_{\text {Net }}=m a$
$\Rightarrow m g-T=m a$
- For the flywheel use $\tau_{\text {Net }}=I \alpha$
$\Rightarrow T R \sin (90)=I \alpha$
- Realize that $a=\alpha R$

$$
\Rightarrow \quad T R=I \frac{a}{R}
$$

- Now solve for a, eliminate T :

$$
a=\left(\frac{m R^{2}}{m R^{2}+I}\right) g
$$

Falling weight \& pulley...

- Using 1-D kinematics we can solve for the time required for the weight to fall a distance L :

$$
\begin{aligned}
& y=y_{0}+v_{0} t+\frac{1}{2} a t^{2} \\
& L=\frac{1}{2} a t^{2} \Rightarrow t=\sqrt{\frac{2 L}{a}} \\
& \text { where } a=\left(\frac{m R^{2}}{m R^{2}+I}\right) g
\end{aligned}
$$

Torque ACT

- Which pulley will make it drop fastest?

1) Small pulley
2) Large pulley
3) Same

TADSi0n o o

Compare the tensions T_{1} and T_{2} as the blocks are accelerated to the right by the force F.
A) $T_{1}<T_{2}$
B) $T_{1}=T_{2}$
C) $T_{1}>T_{2}$

Compare the tensions T_{1} and T_{2} as block 3 falls
A) $T_{1}<T_{2}$
B) $T_{1}=T_{2}$
C) $T_{1}>T_{2}$

Rolling

A wheel is spinning clockwise such that the speed of the outer rim is $2 \mathrm{~m} / \mathrm{s}$.

You now carry the spinning wheel to the right at $2 \mathrm{~m} / \mathrm{s}$. What is the velocity of the top of the wheel relative to the ground?
A) $-4 \mathrm{~m} / \mathrm{s}$
B) $-2 \mathrm{~m} / \mathrm{s}$
C) $0 \mathrm{~m} / \mathrm{s}$
D) $+2 \mathrm{~m} / \mathrm{s}$
E) $+4 \mathrm{~m} / \mathrm{s}$

What is the velocity of the bottom of the wheel relative to the ground?
A) $-4 \mathrm{~m} / \mathrm{s}$
B) $-2 \mathrm{~m} / \mathrm{s}$
C) $0 \mathrm{~m} / \mathrm{s}$
D) $+2 \mathrm{~m} / \mathrm{s}$
E) $+4 \mathrm{~m} / \mathrm{s}$
Physics 101: Lecture 15, Pg 10

Rolling

- An object with mass M, radius R, and moment of inertia I rolls without slipping down a plane inclined at an angle θ with respect to horizontal. What is its acceleration?
- Consider CM motion and rotation about the CM separately when solving this problem

Rolling...

- Static friction f causes rolling. It is an unknown, so we must solve for it.
- First consider the free body diagram of the object and use $F_{N E T}=M a_{c m}$:
In the x direction $M g \sin \theta-f=M a_{c m}$
- Now consider rotation about the CM and use $\tau_{\mathrm{N} \varepsilon \tau}=I \alpha$ realizing that $\tau=R f$ and $a=\alpha R$
$R f=\mathrm{I} \frac{a}{R} \Rightarrow f=\mathrm{I} \frac{a}{R^{2}}$

Rolling...

- We have two equations:

$$
M g \sin \theta-f=M a
$$

$$
\mathrm{f}=\mathrm{I} \frac{\mathrm{a}}{\mathrm{R}^{2}}
$$

- We can combine these to eliminate f :

$$
a=\mathrm{g}\left(\frac{\mathrm{MR}^{2} \sin \theta}{\mathrm{MR}^{2}+\mathrm{I}}\right)
$$

For a sphere:

$$
a=\mathrm{g}\left(\frac{\mathrm{MR}^{2} \sin \theta}{\mathrm{MR}^{2}+\frac{2}{5} \mathrm{MR}^{2}}\right)=\frac{5}{7} g \sin \theta
$$

Energy Conservation!

- Friction causes object to roll, but if it rolls w/o slipping friction does NO work!
$\Rightarrow W=F d \cos \theta \quad d$ is zero for point in contact
- No dissipated work, energy is conserved
- Need to include both translational and rotational kinetic energy.
$\Rightarrow \mathrm{K}=1 / 2 \mathrm{~m} v^{2}+1 / 2 \mathrm{I} \omega^{2}$

Translational + Rotational KE

- Consider a cylinder with radius R and mass M , rolling w/o slipping down a ramp. Determine the ratio of the translational to rotational KE.

$$
\begin{aligned}
& \text { Translational: } \quad \mathrm{K}_{\mathrm{T}}=1 / 2 \mathrm{M} \mathrm{v}^{2} \\
& \text { Rotational: } \quad \mathrm{K}_{\mathrm{R}}=1 / 2 \mathrm{I} \omega^{2} \\
& \text { use } I=\frac{1}{2} M R^{2} \quad \text { and } \quad \omega=\frac{V}{R} \\
& \text { Rotational: } \quad \begin{aligned}
\mathrm{K}_{\mathrm{R}} & =1 / 2\left(1 / 2 \mathrm{M} \mathrm{R}^{2}\right)(\mathrm{V} / \mathrm{R})^{2} \\
& =1 / 4 \mathrm{M} \mathrm{v}^{2} \\
& =1 / 2 \mathrm{~K}_{\mathrm{T}}
\end{aligned}
\end{aligned}
$$

Rolling Act

- Two uniform cylinders are machined out of solid aluminum. One has twice the radius of the other.
\Rightarrow If both are placed at the top of the same ramp and released, which is moving faster at the bottom?
(a) bigger one
(b) smaller one
(c) same

Summary

- $\tau=\mathrm{I} \alpha$
- Energy is Conserved
\Rightarrow Need to include translational and rotational

