Physics 101: Lecture 15 Rolling Objects Today's lecture will cover Textbook Chapter 8.5-8.7

Review K_{rotation} = ½ I ω² Torque = Force that causes rotation τ = F r sin θ Equilibrium F_{Net} = 0

 $\tau_{\text{Net}} = 0$

Today

→ $\tau_{\text{Net}} = I \alpha$ (rotational F = ma) → Energy conservation revisited

Linear and Angular

	Linear	Angular	
Displacement	X	θ	
Velocity	V	ω	
Acceleration	a	α	
Inertia	m	Ι	
KE	¹ ∕₂ m v2	¹ / ₂ Ι ω ²	т
N2L	F=ma	$\tau = I\alpha$	+
Momentum	p = mv	$L = I\omega$	

Rotational Form Newton's 2nd Law

• $\tau_{\rm Net} = I \alpha$ → Torque is amount of twist provide by a force » Signs: positive = CCW → Moment of Inertia like mass. Large I means hard to start or stop from spinning. Problems Solved Like Newton's 2nd →Draw FBD → Write Newton's 2nd Law

Falling weight & pulley

A mass *m* is hung by a string that is wrapped around a pulley of radius *R* attached to a heavy flywheel. The moment of inertia of the pulley + flywheel is *I*. The string does not slip on the pulley.
Starting at rest, how long does it take for the mass to fall a distance *L*.

What method should we use to solve this problem? A) Conservation of Energy (including rotational) B) $\tau_{\text{Net}} = I\alpha$ and then use kinematics

Since it asks for time, we will use B.

Falling weight & pulley...

• For the hanging mass use $F_{Net} = ma$

 $\rightarrow mg - T = ma$

- For the flywheel use $\tau_{\text{Net}} = I\alpha$ $\rightarrow TR \sin(90) = I\alpha$
- Realize that $a = \alpha R$

$$a = \left(\frac{mR^2}{mR^2 + I}\right)g$$

Falling weight & pulley...

• Using 1-D kinematics we can solve for the time required for the weight to fall a distance *L*:

$$y = y_0 + v_0 t + \frac{1}{2} a t^2$$

$$L = \frac{1}{2}at^2 \quad \Longrightarrow \quad t = \sqrt{\frac{2L}{a}}$$

where
$$a = \left(\frac{mR^2}{mR^2 + I}\right)g$$

Torque ACT

- Which pulley will make it drop fastest?
- 1) Small pulley
 2) Large pulley
- 3) Same

Tension...

Compare the tensions T_1 and T_2 as the blocks are accelerated to the right by the force F.

A) $T_1 < T_2$ B) $T_1 = T_2$ C) $T_1 > T_2$

Rolling

A wheel is spinning clockwise such that the speed of the outer rim is 2 m/s.

What is the velocity of the top of the wheel relative to the ground? + 2 m/s

What is the velocity of the bottom of the wheel relative to the ground? -2 m/s

X

You now carry the spinning wheel to the right at 2 m/s. What is the velocity of the top of the wheel relative to the ground? A) -4 m/s B) -2 m/s C) 0 m/s D) +2m/s E) +4 m/s What is the velocity of the bottom of the wheel relative to the ground? A) -4 m/s B) -2 m/s C) 0 m/s D) +2m/s E) +4 m/s Physics 101: Lecture 15, Pg 10

An object with mass *M*, radius *R*, and moment of inertia *I* rolls without slipping down a plane inclined at an angle θ with respect to horizontal. What is its acceleration?

 Consider CM motion and rotation about the CM separately when solving this problem

Rolling...

- Static friction *f* causes rolling. It is an unknown, so we must solve for it.
- First consider the free body diagram of the object and use $F_{NET} = Ma_{cm}$: In the *x* direction $Mg \sin \theta - f = Ma_{cm}$
- Now consider rotation about the CM and use $\tau_{N \in \tau} = I \alpha$ realizing that $\tau = R f$ and $a = \alpha R$

$$Rf = I\frac{a}{R} \implies f = I\frac{a}{R^2}$$

θ

M

Rolling...

• We have two equations:

$$Mg \sin \theta - f = Ma$$

$$f = I \frac{a}{R^2}$$

• We can combine these to eliminate *f*:

$$a = g \left(\frac{MR^2 \sin \theta}{MR^2 + I} \right)$$

For a sphere:

$$a = g \left(\frac{MR^2 \sin \theta}{MR^2 + \frac{2}{5}MR^2} \right) = \frac{5}{7}g \sin \theta$$

Energy Conservation!

Friction causes object to roll, but if it rolls w/o slipping friction does NO work!
 W = F d cos θ d is zero for point in contact

No dissipated work, energy is conserved

Need to include both translational and rotational kinetic energy.
 → K = ½ m y² + ½ I ω²

Translational + Rotational KE

• Consider a cylinder with radius R and mass M, rolling w/o slipping down a ramp. Determine the ratio of the translational to rotational KE.

Translational: $K_T = \frac{1}{2} M v^2$ Rotational: $K_R = \frac{1}{2} I \omega^2$ use $I = \frac{1}{2}MR^2$ and $\omega = \frac{V}{R}$ Rotational: $K_{R} = \frac{1}{2} (\frac{1}{2} M R^{2}) (V/R)^{2}$ $= \frac{1}{4} M v^2$ $= \frac{1}{2} K_{T}$

Rolling Act

- Two uniform cylinders are machined out of solid aluminum. One has twice the radius of the other.
 - If both are placed at the top of the same ramp and released, which is moving faster at the bottom?
 - (a) bigger one (b) smaller one (c) same

Energy is Conserved Need to include translational and rotational