EXAM III

Physics 101: Lecture 18 Fluids II

Textbook Sections 9.6-9.8

Physics 101: Lecture 18, Pg 1

Review Static Fluids

- Pressure is force exerted by molecules "bouncing" off container $\mathrm{P}=\mathrm{F} / \mathrm{A}$
- Gravity/weight effects pressure $\Rightarrow P=P_{0}+\rho g d$
- Buoyant force is "weight" of displaced fluid.
$\Rightarrow F=\rho \mathrm{gV}$
Today include moving fluids!

$$
\begin{aligned}
& A_{1} v_{1}=A_{2} v_{2} \\
& P_{1}+\rho g y_{1}+1 / 2 \rho v_{1}^{2}=P_{2}+\rho g y_{2}+1 / 2 \rho v_{2}^{2}
\end{aligned}
$$

Archimedes' Principle

- Determine force of fluid on immersed cube
\rightarrow Draw FBD

$$
\begin{aligned}
» \mathrm{~F}_{\mathrm{B}} & =\mathrm{F}_{2}-\mathrm{F}_{1} \\
» & =\mathrm{P}_{2} \mathrm{~A}-\mathrm{P}_{1} \mathrm{~A} \\
» & =\left(\mathrm{P}_{2}-\mathrm{P}_{1}\right) \mathrm{A} \\
» & =\rho \mathrm{g} \mathrm{dA} \\
» \quad & =\rho \mathrm{g} \mathrm{~V}
\end{aligned}
$$

- Buoyant force is weight of displaced fluid!

Archimedes Example

A cube of plastic 4.0 cm on a side with density $=0.8$ $\mathrm{g} / \mathrm{cm}^{3}$ is floating in the water. When a 9 gram coin is placed on the block, how much does it sink
 below the water surface?

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{Net}}=\mathrm{ma} \\
& \mathrm{~F}_{\mathrm{b}}-\mathrm{Mg}-\mathrm{mg}=0 \\
& \rho \mathrm{~g} \mathrm{~V}_{\text {disp }}=(\mathrm{M}+\mathrm{m}) \mathrm{g} \\
& \mathrm{~V}_{\text {disp }}=(\mathrm{M}+\mathrm{m}) / \rho \\
& \mathrm{h} \mathrm{~A}=(\mathrm{M}+\mathrm{m}) / \rho \\
& \mathrm{h}=(\mathrm{M}+\mathrm{m}) /(\rho \mathrm{A}) \\
& \quad=(51.2+9) /(1 \times 4 \times 4)=3.76 \mathrm{~cm}
\end{aligned}
$$

$$
\begin{aligned}
M & =\rho_{\text {plastic }} V_{\text {cube }} \\
& =4 \times 4 \times 4 \times 0.8 \\
& =51.2 \mathrm{~g}
\end{aligned}
$$

Archimedes’ Principle

- Buoyant Force $\left(\mathrm{F}_{\mathrm{B}}\right)$
\Rightarrow weight of fluid displaced
$\Rightarrow F_{B}=\rho_{\text {fluid }} V_{\text {displaced }} g$
$\Rightarrow \mathrm{F}_{\mathrm{g}}=\mathrm{mg}=\rho_{\text {object }} \mathrm{V}_{\text {object }} \mathrm{g}$
\Rightarrow object sinks if $\rho_{\text {object }}>\rho_{\text {fluid }}$
\Rightarrow object floats if $\rho_{\text {object }}<\rho_{\text {fluid }}$

- If object floats...
$\Rightarrow \mathrm{F}_{\mathrm{B}}=\mathrm{F}_{\mathrm{g}}$
\rightarrow Therefore: $\rho_{\text {fluid }} \mathrm{g}$ Vol $_{\text {displ. }}=\rho_{\text {object }} \mathrm{g}$ Vol $_{\text {object }}$
\rightarrow Therefore: $\mathrm{Vol}_{\text {displ }} / \mathrm{Vol}_{\text {object }}=\rho_{\text {obbiect }} / \rho_{\text {fluid }}$

Checkpoint Q1

Suppose you float a large ice-cube in a glass of water, and that after you place the ice in the glass the level of the water is at the very brim. When the ice melts, the level of the water in the glass will:

1. Go up, causing the water to spill out of the glass
2. Go down.
3. Stay the same.

Checkpoint Q2

Which weighs more:

1. A large bathtub filled to the brim with water.
2. A large bathtub filled to the brim with water with a battle-ship floating in it.
3. They will weigh the same.

Tub of water

Physics 101: Lecture 18, Pg 7

Continuity of Fluid Flow

- Watch "plug" of fluid moving through the narrow part of the tube $\left(A_{1}\right)$
-Time for "plug" to pass point $\Delta t=x_{1} / v_{1}$
- Mass of fluid in "plug"

$$
m_{1}=\rho V_{1}=\rho A_{1} x_{1} \text { or } m_{1}=\rho A_{1} V_{1} \Delta t
$$

- Watch "plug" of fluid moving through the wide part of the tube $\left(A_{2}\right)$
-Time for "plug" to pass point $\Delta t=x_{2} / v_{2}$
- Mass of fluid in "plug"
$m_{2}=\rho V_{2}=\rho A_{2} X_{2}$ or $m_{2}=\rho A_{2} V_{2} \Delta t$
- Continuity Equation says $m_{1}=m_{2}$ fluid isn't building up or disappearing
- $\mathrm{A}_{1} \mathrm{v}_{1}=\mathrm{A}_{2} \mathrm{~V}_{2}$

Faucet Prelecture

A stream of water gets narrower as it falls from a faucet (try it \& see).
Explain this phenomenon using the equation continuity

Fluid Flow Concepts

- Mass flow rate: $\rho A v$ (kg/s)
- Volume flow rate: Av (m³/s)
- Continuity: $\rho A_{1} v_{1}=\rho A_{2} V_{2}$
i.e., mass flow rate the same everywhere
e.g., flow of river

Pressure, Flow and Work

- Continuity Equation says fluid speeds up going to smaller opening, slows down going to larger opening

$$
\begin{aligned}
& \Rightarrow A_{1} v_{1}=A_{2} V_{2} \\
& \Rightarrow v_{2}=v_{1}\left(A_{1} / A_{2}\right)
\end{aligned}
$$

Recall:
$W=F d$
$=$ PA d
= P Vol

Demo \rightarrow Smaller tube has faster water and LOWER pressure

- Change in pressure does work!

$$
\Rightarrow \mathrm{W}=\left(\mathrm{P}_{1}-\mathrm{P}_{2}\right) \mathrm{V}_{\text {olume }}
$$

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

(a)

Pressure ACT

- What will happen when I "blow" air between the two plates?
A) Move Apart
B) Come Together
C) Nothing

Bernoulli's Eqs. And Work

- Consider tube where both Area, height change.

$$
\Rightarrow \mathrm{W}=\Delta \mathrm{K}+\Delta \mathrm{U}
$$

$$
\left(P_{1}-P_{2}\right) V=1 / 2 m\left(v_{2}{ }^{2}-v_{1}^{2}\right)+m g\left(y_{2}-y_{1}\right)
$$

$$
\left(\mathrm{P}_{1}-\mathrm{P}_{2}\right) \mathrm{V}=1 / 2 \rho \mathrm{~V}\left(\mathrm{v}_{2}{ }^{2}-\mathrm{v}_{1}^{2}\right)+\rho \mathrm{Vg}\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right)
$$

$$
\mathrm{P}_{1}+\rho g \mathrm{y}_{1}+1 / 2 \rho \mathrm{v}_{1}{ }^{2}=\mathrm{P}_{2}+\rho g y_{2}+1 / 2 \rho v_{2}{ }^{2}
$$

$$
\begin{aligned}
& \text { Note: } \\
& \begin{aligned}
\text { W} & =F d \\
& =P A d \\
& =P V
\end{aligned}
\end{aligned}
$$

Bernoulli ACT

- Through which hole will the water come out fastest?

$$
P_{1}+\rho g y_{1}+1 / 2 \rho v_{1}^{2}=P_{2}+\rho g y_{2}+1 / 2 \rho v_{2}^{2}
$$

Note: All three holes have same pressure $\mathrm{P}=1$ Atmosphere

$$
\begin{gathered}
\rho g y_{1}+1 / 2 \rho v_{1}^{2}=\rho g y_{2}+1 / 2 \rho v_{2}^{2} \\
g y_{1}+1 / 2 v_{1}^{2}=g y_{2}+1 / 2 v_{2}^{2}
\end{gathered}
$$

Smaller y gives larger v. Hole C is fastest

Act

A large bucket full of water has two drains. One is a hole in the side of the bucket at the bottom, and the other is a pipe coming out of the bucket near the top, which bent is downward such that the bottom of this pipe even with the other hole, like in the picture below:
Though which drain is the water spraying out with the highest speed?

1. The hole
2. The pipe
3. Same

Lift a House

Calculate the net lift on a 15 mx 15 m house when a $30 \mathrm{~m} / \mathrm{s}$ wind ($1.29 \mathrm{~kg} / \mathrm{m}^{3}$) blows over the top.

$$
\begin{aligned}
\mathrm{P}_{1}+\rho g y_{1} & +1 / 2 \rho \mathrm{v}_{1}^{2}=\mathrm{P}_{2}+\rho g y_{2}+1 / 2 \rho v_{2}^{2} \\
\mathrm{P}_{1}-\mathrm{P}_{2} & =1 / 2 \rho\left(\mathrm{v}_{2}^{2}-\mathrm{v}_{1}^{2}\right) \\
& =1 / 2 \rho\left(\mathrm{v}_{2}^{2}-\mathrm{v}_{1}^{2}\right) \\
& =1 / 2(1.29)\left(30^{2}\right) \mathrm{N} / \mathrm{m}^{2} \\
& =581 \mathrm{~N} / \mathrm{m}^{2}
\end{aligned}
$$

$$
\mathrm{F}=\mathrm{PA}
$$

$$
=581 \mathrm{~N} / \mathrm{m}^{2}(15 \mathrm{~m})(15 \mathrm{~m})=131,000 \mathrm{~N}
$$

$$
=29,000 \text { pounds! (note roof weighs } 15,000 \mathrm{lbs})
$$

Example (like HW)

A garden hose w/ inner diameter 2 cm , carries water at $2.0 \mathrm{~m} / \mathrm{s}$. To spray your friend, you place your thumb over the nozzle giving an effective opening diameter of 0.5 cm . What is the speed of the water exiting the hose? What is the pressure difference between inside the hose and outside?
Continuity Equation

$$
\begin{aligned}
& A_{1} \mathrm{v}_{1}=\mathrm{A}_{2} \mathrm{v}_{2} \\
& \mathrm{v}_{2}=\mathrm{v}_{1}\left(\mathrm{~A}_{1} / \mathrm{A}_{2}\right) \\
& \\
& \\
& =\mathrm{v}_{1}\left(\pi \mathrm{r}_{1}^{2} / \pi \mathrm{r}_{2}^{2}\right) \\
& \\
& \\
& =2 \mathrm{~m} / \mathrm{s} \times 16=32 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Bernoulli Equation

$$
\begin{aligned}
& \mathrm{P}_{1}+\rho g y_{1}+1 / 2 \rho \mathrm{v}_{1}{ }^{2}=\mathrm{P}_{2}+\rho g y_{2}+1 / 2 \rho \mathrm{v}_{2}{ }^{2} \\
& \mathrm{P}_{1}-\mathrm{P}_{2}=1 / 2 \rho\left(\mathrm{v}_{2}{ }^{2}-\mathrm{v}_{1}{ }^{2}\right) \\
& \quad=1 / 2 \times\left(1000 \mathrm{~kg} / \mathrm{m}^{3}\right)\left(1020 \mathrm{~m}^{2} / \mathrm{s}^{2}\right)=5.1 \times 10^{5} \mathrm{PA}
\end{aligned}
$$

Fluid Flow Summary

- Mass flow rate: $\rho A v$ (kg/s)
- Volume flow rate: Av (m³/s)
- Continuity: $\rho A_{1} v_{1}=\rho A_{2} V_{2}$
- Bernoulli: $P_{1}+1 / 2 \rho v_{1}^{2}+\rho g h_{1}=P_{2}+1 / 2 \rho v_{2}^{2}+\rho g h_{2}$

