ЕХAM III

Physics 101: Lecture 19 Elasticity and Oscillations

Physics 101: Lecture 19, Pg 1

Overview

- Springs (review)
\rightarrow Restoring force proportional to displacement
$\rightarrow F=-k x$ (often a good approximation)
$\rightarrow \mathrm{U}=1 / 2 \mathrm{kx} \mathrm{x}^{2}$
- Today
\rightarrow Simple Harmonic Motion
\rightarrow Springs Revisited
\rightarrow Young's Modulus (where does k come from?)

Springs

- Hooke's Law: The force exerted by a spring is proportional to the distance the spring is stretched or compressed from its relaxed position.

$$
\begin{array}{ll}
\Rightarrow F_{X}=-k x & \text { Where } x \text { is the displacement from } \\
& \text { the relaxed position and } k \text { is the } \\
& \text { constant of proportionality. }
\end{array}
$$

Springs ACT

- Hooke's Law: The force exerted by a spring is proportional to the distance the spring is stretched or compressed from its relaxed position.
$\rightarrow F_{X}=-k x$ Where x is the displacement from the relaxed position and k is the constant of proportionality.

What is force of spring when it is stretched as shown below.
A) $\mathrm{F}>0$

$$
\text { B) } F=0
$$

$$
\text { C) } \mathrm{F}<0
$$

Springs

- Hooke's Law: The force exerted by a spring is proportional to the distance the spring is stretched or compressed from its relaxed position.
$\rightarrow F_{X}=-k x$
Where x is the displacement from the relaxed position and k is the constant of proportionality.

Potential Energy in Spring

- Hooke's Law force is Conservative

$$
\begin{aligned}
& \Rightarrow \mathrm{F}=-\mathrm{kx} \\
& \Rightarrow \mathrm{~W}=-1 / 2 \mathrm{kx}^{2}
\end{aligned}
$$

\Rightarrow Work done only depends on initial and final position
\rightarrow Define Potential Energy $\mathrm{U}_{\text {spring }}=1 / 2 \mathrm{k} \mathrm{x}^{2}$

Simple Harmonic Motion

- Vibrations
\rightarrow Vocal cords when singing/speaking
\rightarrow String/rubber band
- Simple Harmonic Motion
\rightarrow Restoring force proportional to displacement
\rightarrow Springs F = -kx

Spring ACT II

A mass on a spring oscillates back \& forth with simple harmonic motion of amplitude A. A plot of displacement (x) versus time (t) is shown below. At what points during its oscillation is the magnitude of the acceleration of the block biggest?

1. When $x=+$ A or -A (i.e. maximum displacement)
2. When $x=0$ (i.e. zero displacement)
3. The acceleration of the mass is constant

Springs and Simple Harmonic Motion

Simple Harmonic Motion:

$$
\begin{array}{lll}
x(t)=[A] \cos (\omega t) & x(t)=[A] \sin (\omega t) \\
v(t)=-[A \omega] \sin (\omega t) & O R & v(t)=[A \omega] \cos (\omega t) \\
a(t)=-\left[A \omega^{2}\right] \cos (\omega t) & a(t)=-\left[A \omega^{2}\right] \sin (\omega t) \\
\left.x_{\max }=A \quad \text { Period }=T \text { (seconds per cycle }\right) \\
\left.v_{\max }=A \omega \quad \text { Frequency }=f=1 / T \text { (cycles per second }\right) \\
a_{\text {max }}=A \omega^{2} \quad \text { Angular frequency }=\omega=2 \pi f=2 \pi / T
\end{array}
$$

For spring: $\omega^{2}=k / m$

**** Energy 落法*

- A mass is attached to a spring and set to motion. The maximum displacement is $\mathrm{x}=A$
$\Rightarrow \Sigma \mathrm{W}_{\mathrm{nc}}=\Delta \mathrm{K}+\Delta \mathrm{U}$
$\Rightarrow \quad 0=\Delta \mathrm{K}+\Delta \mathrm{U}$ or Energy $\mathrm{U}+\mathrm{K}$ is constant! Energy $=1 / 2 \mathrm{k} \mathrm{x}^{2}+1 / 2 \mathrm{~m} \mathrm{v}^{2}$
\Rightarrow At maximum displacement $x=A, v=0$

$$
\text { Energy }=1 / 2 \mathrm{k} \mathrm{~A}^{2}+0
$$

\rightarrow At zero displacement $x=0$

$$
\text { Energy }=0+1 / 2 \mathrm{mv}_{\mathrm{m}}^{2}
$$

Since Total Energy is same

$$
\begin{aligned}
& 1 / 2 \mathrm{k} \mathrm{~A}^{2}=1 / 2 \mathrm{~m}_{\mathrm{m}}{ }^{2} \\
& \mathrm{v}_{\mathrm{m}}=\operatorname{sqrt}(\mathrm{k} / \mathrm{m}) \mathrm{A}
\end{aligned}
$$

Physics 101: Lecture 19, Pg 11

Prelecture 1+2

A mass on a spring oscillates back \& forth with simple harmonic motion of amplitude A. A plot of displacement (x) versus time (t) is shown below. At what points during its oscillation is the speed of the block biggest?

1. When $\mathrm{x}=+\mathrm{A}$ or -A (i.e. maximum displacement)
2. When $x=0$ (i.e. zero displacement)
3. The speed of the mass is constant

Prelecture 3+4

A mass on a spring oscillates back \& forth with simple harmonic motion of amplitude A. A plot of displacement (x) versus time (t) is shown below. At what points during its oscillation is the total energy $(\mathrm{K}+\mathrm{U})$ of the mass and spring a maximum? (Ignore gravity).

1. When $x=+$ A or -A (i.e. maximum displacement)
2. When $x=0$ (i.e. zero displacement)
3. The energy of the system is constant.

What does moving in a circle have to do with moving back \& forth in a straight line ??

Physics 101: Lecture 19, Pg 14

SHM and Circles

Physics 101: Lecture 19, Pg 15

Simple Harmonic Motion:

$$
\begin{array}{lll}
x(t)=[A] \cos (\omega t) & x(t)=[A] \sin (\omega t) \\
v(t)=-[A \omega] \sin (\omega t) & \text { OR } & v(t)=[A \omega] \cos (\omega t) \\
a(t)=-\left[A \omega^{2}\right] \cos (\omega t) & a(t)=-\left[A \omega^{2}\right] \sin (\omega t) \\
& \\
\left.x_{\max }=A \quad \text { Period }=T \text { (seconds per cycle }\right) \\
v_{\max }=A \omega & \text { Frequency }=f=1 / T \text { (cycles per second }) \\
a_{\text {max }}=A \omega^{2} & \text { Angular frequency }=\omega=2 \pi f=2 \pi / T
\end{array}
$$

For spring: $\omega^{2}=k / m$

Example

A 3 kg mass is attached to a spring ($\mathrm{k}=24 \mathrm{~N} / \mathrm{m}$). It is stretched 5 cm . At time $t=0$ it is released and oscillates.

Which equation describes the position as a function of time $\mathrm{x}(\mathrm{t})=$
A) $5 \sin (\omega t)$
B) $5 \cos (\omega t)$
C) $24 \sin (\omega \mathrm{t})$

$$
\begin{array}{ll}
\text { D) } 24 \cos (\omega \mathrm{t}) & \text { E) }-24 \cos (\omega \mathrm{t})
\end{array}
$$

Example

A 3 kg mass is attached to a spring ($\mathrm{k}=24 \mathrm{~N} / \mathrm{m}$). It is stretched 5 cm . At time $\mathrm{t}=0$ it is released and oscillates.

What is the total energy of the block spring system?
A) 0.03 J
B) .05 J
C) .08 J

Example

A 3 kg mass is attached to a spring ($\mathrm{k}=24 \mathrm{~N} / \mathrm{m}$). It is stretched 5 cm . At time $t=0$ it is released and oscillates.

What is the maximum speed of the block?
A) $.45 \mathrm{~m} / \mathrm{s}$
B) $.23 \mathrm{~m} / \mathrm{s}$
C) $.14 \mathrm{~m} / \mathrm{s}$

Example

A 3 kg mass is attached to a spring ($\mathrm{k}=24 \mathrm{~N} / \mathrm{m}$). It is stretched 5 cm . At time $\mathrm{t}=0$ it is released and oscillates.

How long does it take for the block to return to $x=+5 \mathrm{~cm}$?
A) 1.4 s
B) 2.2 s
C) 3.5 s

Summary

- Springs
$\Rightarrow F=-k x$
$\Rightarrow \mathrm{U}=1 / 2 \mathrm{kx}^{2}$
$\Rightarrow \omega=\operatorname{sqrt}(\mathrm{k} / \mathrm{m})$
- Simple Harmonic Motion
\Rightarrow Occurs when have linear restoring force $\mathrm{F}=-\mathrm{kx}$
$\Rightarrow x(t)=[A] \cos (\omega t) \quad$ or $\quad[A] \sin (\omega t)$
$\Rightarrow \mathrm{v}(\mathrm{t})=-[\mathrm{A} \omega] \sin (\omega \mathrm{t})$ or $[\mathrm{A} \omega] \cos (\omega \mathrm{t})$
$\Rightarrow \mathrm{a}(\mathrm{t})=-\left[\mathrm{A} \omega^{2}\right] \cos (\omega \mathrm{t})$ or $\quad-\left[\mathrm{A} \omega^{2}\right] \sin (\omega \mathrm{t})$

Young's Modulus

- Spring $\mathrm{F}=-\mathrm{kx} \quad$ [demo]
\Rightarrow What happens to " k " if cut spring in half?
\Rightarrow A) decreases $\begin{array}{lll}\text { B) same } & \text { C) increases }\end{array}$
- k is inversely proportional to length!
- Define
\rightarrow Strain $=\Delta \mathrm{L} / \mathrm{L}$
\rightarrow Stress $=$ F/A
- Now
\rightarrow Stress $=$ Y Strain
$\Rightarrow \mathrm{F} / \mathrm{A}=\mathrm{Y} \Delta \mathrm{L} / \mathrm{L}$
$\Rightarrow \mathrm{k}=\mathrm{Y} \mathrm{A} / \mathrm{L} \quad$ from $\mathrm{F}=\mathrm{kx}$
- Y (Young's Modules) independent of L

