## EXAM III

## Physics 101: Lecture 24 Ideal Gas Law and Kinetic Theory

- Today's lecture will cover Textbook Chapter 13.5-13.7


Physics 101: Lecture 24, Pg 1

## Molecular Picture of Gas

- Gas is made up of many individual molecules
- Number density is number of molecules/volume:
$\rightarrow \mathrm{N} / \mathrm{V}=\rho / \mathrm{m}$
$\rightarrow \rho$ is the mass density
$\Rightarrow \mathrm{m}$ is the mass for one molecule

$$
1 \mathrm{u}=1.66^{*} 10^{-27} \mathrm{~kg}=1 / 12 \text { of a mass of } C^{12}
$$

- Number of moles: $\mathrm{n}=\mathrm{N} / \mathrm{N}_{\mathrm{A}}$
$\rightarrow \mathrm{N}_{\mathrm{A}}=$ Avogadro's Number $=6.022 \times 10^{23} \mathrm{~mole}^{-1}$

- Mass of 1 mole of "stuff" in grams = molecular mass in u
$\Rightarrow$ e.g., 1 mole of $\mathrm{N}_{2}$ has mass of $2 \times 14=28$ grams


## Atomic Act I

Which contains the most molecules ? 1. A mole of water $\left(\mathrm{H}_{2} \mathrm{O}\right)$
2. A mole of oxygen gas $\left(\mathrm{O}_{2}\right)$
3. Same


## Atomic Act II

Which contains the most atoms ?

1. A mole of water $\left(\mathrm{H}_{2} \mathrm{O}\right)$
2. A mole of oxygen gas $\left(\mathrm{O}_{2}\right)$
3. Same

## Atomic Act III

Which weighs the most ?

1. A mole of water $\left(\mathrm{H}_{2} \mathrm{O}\right)$
2. A mole of oxygen gas $\left(\mathrm{O}_{2}\right)$
3. Same

## The Ideal Gas Law

- $\mathrm{P} V=\mathrm{Nk}_{\mathrm{B}} \mathrm{T}$
$\Rightarrow \mathrm{P}=$ pressure in $\mathrm{N} / \mathrm{m}^{2}$ (or Pascals)
$\Rightarrow \mathrm{V}=$ volume in $\mathrm{m}^{3}$
$\Rightarrow N=$ number of molecules

$\Rightarrow \mathrm{T}=$ absolute temperature in K
$\Rightarrow \mathrm{k}_{\mathrm{B}}=$ Boltzmann's constant $=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$
$\Rightarrow$ Note: P V has units of N-m or J (energy!)
- P V $=\mathrm{n}$ R T
$\Rightarrow \mathrm{n}=$ number of moles
$\Rightarrow \mathrm{R}=$ ideal gas constant $=\mathrm{N}_{\mathrm{A}} \mathrm{k}_{\mathrm{B}}=8.31 \mathrm{~J} / \mathrm{mol} / \mathrm{K}$



## Ideal Gas Law ACT I $\mathrm{PV}=\mathrm{nRT}$

You inflate the tires of your car so the pressure is 30 psi, when the air inside the tires is at 20 degrees C. After driving on the highway for a while, the air inside the tires heats up to 38 C . Which number is closest to the new air pressure?

1) 16 psi
2) 32 psi
3) 57 psi

## Ideal Gas Law: ACT II pV = nRT

- A piston has volume 20 ml , and pressure of 30 psi. If the volume is decreased to 10 ml , what is the new pressure? (Assume T is constant.)

1) 60
2) 30
3) 15


## Balloon ACT 1

- What happens to the pressure of the air inside a hot-air balloon when the air is heated? (Assume V is constant)

1) Increases 2) Same 3) Decreases

## Balloon ACT 2

- What happens to the buoyant force on the balloon when the air is heated? (Assume V remains constant)

1) Increases 2) Same 3) Decreases

## Balloon ACT 3

- What happens to the number of air molecules inside the balloon when the air is heated? (Assume V remains constant)

1) Increases 2) Same 3) Decreases

# Ideal Gas Law: Demos $\mathbf{p V}=\mathbf{n R T}$ 

- When T is constant, PV is constant (Boyle's Law)
$\Rightarrow$ Boyle's law demo
- When P is constant, V is proportional to T
$\Rightarrow$ Hot air balloon, helium and oxygen in $\mathrm{LN}_{2}$
- When V is constant, P is proportional to T
$\rightarrow$ Explosion!


## Kinetic Theory:

The relationship between energy and temperature (for monatomic ideal gas)

$$
\begin{aligned}
& \Delta p_{x}=2 m v_{x} \\
& \Delta t=2 \frac{L}{v_{x}} \\
& F_{\text {avg }}=\frac{\Delta p_{x}}{\Delta t}=\frac{m v_{x}^{2}}{L}
\end{aligned}
$$

For N molecules, multiply by N

$$
P=\frac{F}{A}=\frac{N m v_{x}^{2}}{V}
$$

Note KE $=\frac{1}{2} m v^{2}=3 / 2 m v_{x}{ }^{2}$


$$
P=\frac{2}{3} \frac{N}{V}\left\langle K_{t r}\right\rangle
$$

Using PV = NkT
$\left\langle K_{t r}\right\rangle=\frac{1}{2} m\left\langle v^{2}\right\rangle=\frac{3}{2} k T$

〈〉 means average. kT/2 energy per degree of freedom = equipartition theorem

## Prelecture 1

root-mean-square?
Suppose you want the rms (root-mean-square) speed of molecules in a sample of gas to double. By what factor should you increase the temperature of the gas?

1. 2
2. $\sqrt{2}$
3. 4

## Example

- What is the rms speed of a nitrogen $\left(\mathrm{N}_{2}\right)$ molecule in this classroom?

$$
\begin{aligned}
& \langle K E\rangle=\frac{3}{2} \mathrm{k}_{\mathrm{B}} \mathrm{~T} \\
& \begin{aligned}
\frac{1}{2} \mathrm{~m}\left\langle\mathrm{v}^{2}\right\rangle=\frac{3}{2} \mathrm{k}_{\mathrm{B}} \mathrm{~T} \quad \mathrm{~V} & =510 \mathrm{~m} / \mathrm{s} \\
\left\langle\mathrm{v}^{2}\right\rangle=\frac{3 \mathrm{k}_{\mathrm{B}} \mathrm{~T}}{\mathrm{~m}} & =1150 \mathrm{mph}! \\
& \left\langle\mathrm{v}^{2}\right\rangle=\frac{3\left(1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}\right)(273+20) \mathrm{K}}{(28 \mathrm{u}) \times\left(1.66 \times 10^{-27} \mathrm{~kg} / \mathrm{u}\right)}
\end{aligned}
\end{aligned}
$$

## Summary

- Ideal Gas Law PV = n R T
$\Rightarrow \mathrm{P}=$ pressure in $\mathrm{N} / \mathrm{m}^{2}$ (or Pascals)
$\Rightarrow \mathrm{V}=$ volume in $\mathrm{m}^{3}$
$\Rightarrow \mathrm{n}=\#$ moles
$\Rightarrow \mathrm{R}=8.31 \mathrm{~J} /$ ( K mole)
$\Rightarrow \mathrm{T}=$ Temperature (K)
- Kinetic Theory of Monatomic Ideal Gas
$\Rightarrow\left\langle\mathrm{K}_{\mathrm{tr}}\right\rangle=3 / 2 \mathrm{k}_{\mathrm{B}} \mathrm{T}$

