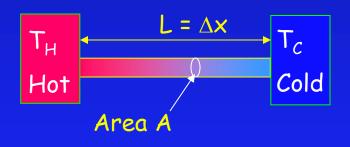

FINAL

Physics 101: Lecture 26 Conduction, Convection, Radiation

Today's lecture will cover Textbook Chapter 14.4-14.9



Review

- Heat is FLOW of energy
 - >Flow of energy may increase temperature
- Specific Heat, c
 - \rightarrow Q = mc Δ T, Δ T = Q / (m c)
- Latent Heat, L
 - heat associated with change in phase
 - \rightarrow Q = m L
- Today: Mechanisms of Heat Flow
 - → Conduction
 - → Convection
 - → Radiation

Heat Transfer: Conduction

- Hot molecules have more KE than cold molecules
- High-speed molecules on left collide with low-speed molecules on right
 teaspoons
 - → energy transferred to lower-speed molecules
 - → heat transfers from hot to cold
- H = rate of heat transfer = Q/t [J/s]
 - \rightarrow H = κ A (T_H-T_C)/L
 - » $Q/t = \kappa A \Delta T/\Delta x$
 - $\rightarrow \kappa$ = "thermal conductivity"
 - » Units: J/s-m-C
 - » good thermal conductors…high κ
 - » good thermal insulators ... low κ

Conduction ACT

- On a cold winter night, which will keep you warmer in bed.
- A) A thin cotton sheet
- B) A thick wool blanket
- c) Either one

Prelecture 1

On a cool night you make your bed with a thin cotton sheet covered by a thick wool blanket. As you lay there all covered up, heat is leaving your body, flowing though the sheet and the blanket and into the air of the room. Compare the amount of heat that flows though the sheet to the amount of heat that flows through the blanket.

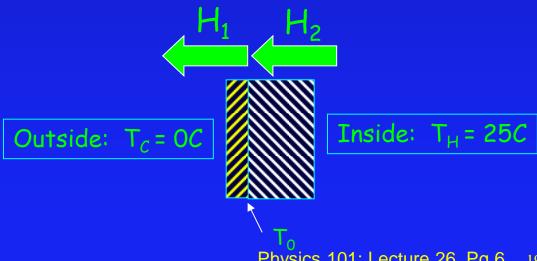
- 1. More heat flows through sheet than through the blanket.
- 2. More heat flows through blanket than through the sheet.
- 3. The same amount of heat flows through sheet as the blanket.

Conduction w/ 2 layers ACT

Compare the heat flow through material 1 and 2.

A)
$$H_1 > H_2$$

B)
$$H_1 = H_2$$


C)
$$H_1 < H_2$$

• Estimate T_0 , the temperature between the two

A) 2 C

B) 12.5 C

C) 20 C

Conduction w/ 2 layers

- Find H=Q/t in J/s
 - → Key Point: Continuity (just like fluid flow)
 - $H_1 = H_2$
 - $\kappa_1 A(T_0 T_C) / \Delta x_1 = \kappa_2 A(T_H T_0) / \Delta x_2$
 - \rightarrow solve for $T_0 = \text{temp.}$ at junction
 - \gg then solve for H_1 or H_2
 - answers: $T_0 = 2.27 C H = 318 J/s$

Outside: $T_C = OC$

 $\Delta x_1 = 0.02 \text{ m}$ $A_1 = 35 \text{ m}^2 \text{ k}_1 = 0.080 \text{ J/s-m-C}$

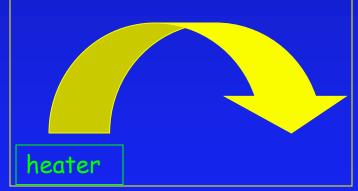
 $\Delta x_2 = 0.075 \text{ m}$ $A_1 = 35 \text{ m}^2 \text{ k}_2 = 0.030 \text{ J/s-m-C}$

Conduction ACT

• Which marbles will fall last?

1) Copper 2) Steel 3) Aluminum

Material	$\kappa \left(\frac{\mathbf{W}}{\mathbf{m} \cdot \mathbf{K}} \right)$
Air	0.023
Rock wool	0.038
Cork	0.046
Wood	0.13
Soil (dry)	0.14
Asbestos	0.17
Snow	0.25
Sand	0.39
Water	0.6
Glass	0.63
Concrete	1.7
Ice	1.7
Stainless steel	14
Lead	35
Steel	46
Nickel	60
Tin	66.8
Platinum	71.6
Iron	72.8
Brass	122
Zinc	116
Tungsten	173
Aluminum	237
Gold	318
Copper	401
Silver	429


Heat Transfer Convection

- Air heats at bottom
- Thermal expansion...density gets smaller
- Lower density air rises
 - → Archimedes: low density floats on high density
- Cooler air pushed down

Cycle continues with net result of circulation

of air

- Practical aspects
 - → heater ducts on floor
 - → A/C ducts on ceiling
 - → stove heats water from bottom
 - → "riding the thermals"

Heat Transfer: Radiation

All things radiate electromagnetic energy

$$\rightarrow H_{emit} = Q/t = eA\sigma T^4$$

- \Rightarrow e = emissivity (between 0 and 1)
 - perfect "black body" has e=1
- » T is temperature of object in Kelvin
- » $\sigma = Stefan-Boltzmann constant = 5.67 x 10^{-8} J/s-m^2-K^4$
- → No "medium" required

DEMO

- All things absorb energy from surroundings
 - $\rightarrow I_{absorb} = eA\sigma T_0^4$
 - \rightarrow T₀ is temperature of surroundings in Kelvin
 - » good emitters (e close to 1) are also good absorbers

Surroundings at T_0

— Hot stove

Heat Transfer: Radiation

 All things radiate and absorb electromagnetic energy

$$\rightarrow I_{emit} = eA\sigma T^4$$

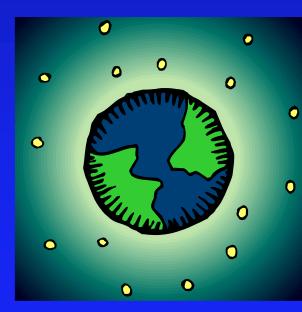
$$\rightarrow I_{absorb} = eA\sigma T_0^4$$

Surroundings at T₀ T Hot stove

$$\rightarrow$$
 $I_{net} = I_{emit} - I_{absorb} = eA\sigma(T^4 - T_0^4)$

- » if $T > T_0$, object cools down
- » if $T < T_0$, object heats up

Earth Homework


The Earth has a surface temperature around 270 K and an emissivity of 0.8, while space has a temperature of around 2 K. What is the net power radiated by the earth into free space?

(Radii of the Earth and the Sun are $R_e = 6.38 \times 10^6 \text{ m}$, $R_s = 7 \times 10^8 \text{ m}$.)

$$I_{\text{net}} = I_{\text{emit}} - I_{\text{absorb}} = eA\sigma(T^4 - T_0^4)$$

$$= (5.76 \times 10^{-8}) (4\pi R_{earth}^2) (0.8) (270^4 - 2^4)$$

$$=1.23\times10^{17} \text{ Watts}$$

Prelecture

One day during the winter, the sun has been shining all day. Toward sunset a light snow begins to fall. It collects without melting on a cement playground, but it melts immediately upon contact on a black asphalt road adjacent to the playground. How do you explain this.

Summary

Conduction - contact

Convection - fluid motion

Radiation