

Physics 101: Lecture 27 Thermodynamics

• Today's lecture will cover Textbook Chapter 15.1-15.6

Check your grades in grade book!!

First Law of Thermodynamics Energy Conservation

The change in internal energy of a system (ΔU) is equal to the heat flow into the system (Q) plus the work done *on* the system (W)

Signs Example

• You are heating some soup in a pan on the stove. To keep it from burning, you also stir the soup. Apply the 1st law of thermodynamics to the soup. What is the sign of (A=Positive B=Zero C=Negative) $1) \mathbf{Q}$ 2) W 3) ΔU

Work Done on a System ACT

The work done on the gas as it contracts isA) PositiveB) ZeroC) Negative

Thermodynamic Systems and P-V Diagrams ideal gas law: PV = nRT

- for n fixed, P and V determine "state" of system
 →T = PV/nR
 - → U = (3/2)nRT = (3/2)PV
- Examples (ACT):
 - → which point has highest T?
 - » B
 - which point has lowest U?
 » C

→ to change the system from C to B, energy must be <u>added</u> to system

First Law of Thermodynamics Isobaric Example

2 moles of monatomic ideal gas is taken from state 1 to state 2 at <u>constant pressure</u> p=1000 Pa, where $V_1 = 2m^3$ and $V_2 = 3m^3$. Find $T_1, T_2, \Delta U, W, Q$. (R=8.31 J/k mole)

1.
$$PV_1 = nRT_1 \implies T_1 = PV_1/nR = 120K$$

2. $PV_2 = nRT_2 \implies T_2 = PV_2/nR = 180K$

3. $\Delta U = (3/2) \text{ nR } \Delta T = 1500 \text{ J}$ $\Delta U = (3/2) \text{ p } \Delta V = 1500 \text{ J}$ (has to be the same)

4. W = $-p \Delta V = -1000 J$

5. Q = ∆U - W = 1500 + 1000 = 2500 J

First Law of Thermodynamics Isochoric Example

2 moles of monatomic ideal gas is taken from state 1 to state 2 at <u>constant volume</u> V=2m³, where T_1 =120K and T_2 =180K. Find Q.

1. Q = ∆U - W

2. ΔU = (3/2) nR ΔT = 1500 J

3. $W = -P \Delta V = 0 J$

4. Q = ∆U - W = 1500 + 0 = 1500 J

requires less heat to raise T at const. volume than at const. pressure

Homework Problem: Thermo I

 $W = -P \Delta V = 0$

Ρ

W = -P∆V (<0)

WORK ACT

If we go the opposite direction for the cycle (4,3,2,1) the net work done on the system will be

A) Positive

B) Negative

PV ACTs

Shown in the picture below are the pressure versus volume graphs for two thermal processes, in each case moving a system from state A to state B along the straight line shown. In which case is the work done on the system the biggest?

A. Case 1

B. Case 2

C. Same

PV ACT 2

Shown in the picture below are the pressure versus volume graphs for two thermal processes, in each case moving a system from state A to state B along the straight line shown. In which case is the change in internal energy of the system the biggest?

- A. Case 1
- B. Case 2
- C. Same

PV ACT3

Shown in the picture below are the pressure versus volume graphs for two thermal processes, in each case moving a system from state A to state B along the straight line shown. In which case is the heat added to the system the biggest?

A. Case 1

B. Case 2

C. Same

First Law Questions

 $Q = \Delta U - W_{\downarrow}$ Work done on system <u>Increase</u> in internal energy of system Heat flow into system P_3 Some questions: • Which part of cycle has largest change in internal energy, ΔU $2 \rightarrow 3$ (since U = 3/2 pV) • Which part of cycle involves the least work W ? $3 \rightarrow 1$ (since W = -p ΔV) What is change in internal energy for full cycle? $\Delta U = 0$ for closed cycle (since both p & V are back where they started) What is net heat into system for full cycle (positive or negative)?

 $\Delta U = 0 \Rightarrow Q = -W = area of triangle (>0)$

• Constant Pressure (isobaric)

Constant Volume

• Constant Temp $\Delta U = 0$

• Adiabatic Q=0

Checkpoints 1-3

Consider a hypothetical device that takes 1000 J of heat from a hot reservoir at 300K, ejects 200 J of heat to a cold reservoir at 100K, and produces 800 J of work.

Does this device violate the first law of thermodynamics ?

- 1. Yes
- 2. No

Reversible?

 Most "physics" processes are reversible: you could play movie backwards and still looks fine. (drop ball vs throw ball up)

Exceptions:
Non-conservative forces (friction)
Heat Flow:
Heat never flows spontaneously from cold to hot

Ist Law of Thermodynamics: Energy Conservation

- point on p-V plot completely specifies state of system (pV = nRT)
- work done is area under curve
- U depends only on T (U = 3nRT/2 = 3pV/2)
- for a complete cycle $\Delta U=0 \Rightarrow Q=-W$