Physics 101: Lecture 27
 Thermodynamics

- Today's lecture will cover Textbook Chapter 15.1-15.6

Check your grades in grade book!!

First Law of Thermodynamics Energy Conservation

The change in internal energy of a system $(\triangle \mathrm{U})$ is equal to the heat flow into the system (Q) plus the work done on the system (W)

Physics 101: Lecture 27, Pg 2

Signs Example

OYou are heating some soup in a pan on the stove. To keep it from burning, you also stir the soup. Apply the $1^{\text {st }}$ law of thermodynamics to the soup. What is the sign of ($\mathrm{A}=$ Positive $\mathrm{B}=$ Zero $\mathrm{C}=$ Negative)

1) Q
2) W
3) ΔU

Work Done on a System ACT

The work done on the gas as it contracts is
A) Positive
B) Zero
C) Negative

Thermodynamic Systems and P-V Diagrams

- ideal gas law: PV = nRT
- for n fixed, P and V determine "state" of system
$\rightarrow \mathrm{T}=\mathrm{PV} / \mathrm{nR}$
$\rightarrow \mathrm{U}=(3 / 2) \mathrm{nRT}=(3 / 2) \mathrm{PV}$
- Examples (ACT):
\Rightarrow which point has highest T ? » B
\Rightarrow which point has lowest U?

» C
\Rightarrow to change the system from C to B , energy must be added to system

First Law of Thermodynamics

 Isobaric Example$$
\begin{aligned}
& \text { 2 moles of monatomic ideal gas is taken } \\
& \text { from state } 1 \text { to state } 2 \text { at constant pressure } \\
& p=1000 \mathrm{~Pa} \text {, where } V_{1}=2 \mathrm{~m}^{3} \text { and } V_{2}=3 \mathrm{~m}^{3} \text {. Find } \\
& T_{1}, T_{2}, \Delta U, W, Q .(R=8.31 \mathrm{~J} / \mathrm{k} \text { mole) } \\
& \text { 1. } P V_{1}=n R T_{1} \Rightarrow T_{1}=P V_{1} / n R=120 \mathrm{~K} \\
& \text { 2. } P V_{2}=n R T_{2} \Rightarrow T_{2}=P V_{2} / n R=180 \mathrm{~K} \\
& \text { 3. } \Delta U=(3 / 2) n R \Delta T=1500 \mathrm{~J} \\
& \Delta U=(3 / 2) p \Delta V=1500 \mathrm{~J} \text { (has to be the same) } \\
& \text { 4. } W=-p \Delta V=-1000 \mathrm{~J} \\
& \text { 5. } Q=\Delta U-W=1500+1000=2500 \mathrm{~J}
\end{aligned}
$$

First Law of Thermodynamics Isochoric Example

2 moles of monatomic ideal gas is taken from state 1 to state 2 at constant volume $\mathrm{V}=2 \mathrm{~m}^{3}$, where $\mathrm{T}_{1}=120 \mathrm{~K}$ and $\mathrm{T}_{2}=180 \mathrm{~K}$. Find Q.

1. $Q=\Delta U-W$
2. $\Delta \mathrm{U}=(3 / 2) n \mathrm{R} \Delta \mathrm{T}=1500 \mathrm{~J}$

3. $W=-P \Delta V=0 J$
4. $Q=\Delta U-W=1500+0=1500 \mathrm{~J}$
requires less heat to raise T at const. volume than at const. pressure

Homework Problem: Thermo I

WORK ACT

If we go the opposite direction for the cycle $(4,3,2,1)$ the net work done on the system will be
A) Positive
B) Negative

Physics 101: Lecture 27, Pg 9

PV ACTs

Shown in the picture below are the pressure versus volume graphs for two thermal processes, in each case moving a system from state A to state B along the straight line shown. In which case is the work done on the system the biggest?
A. Case 1
B. Case 2
C. Same

PV ACT 2

Shown in the picture below are the pressure versus volume graphs for two thermal processes, in each case moving a system from state A to state B along the straight line shown. In which case is the change in internal energy of the system the biggest?
A. Case 1
B. Case 2
C. Same

PV ACT3

Shown in the picture below are the pressure versus volume graphs for two thermal processes, in each case moving a system from state A to state B along the straight line shown. In which case is the heat added to the system the biggest?
A. Case 1
B. Case 2
C. Same

First Law Questions

Some questions:

- Which part of cycle has largest change in internal energy, $\Delta \mathrm{U}$? $2 \rightarrow 3$ (since $U=3 / 2 p V$)
- Which part of cycle involves the least work \mathbf{W} ?
$3 \rightarrow 1$ (since $W=-p \Delta V$)
- What is change in internal energy for full cycle?
$\Delta U=0$ for closed cycle (since both p \& V are back where they started)
-What is net heat into system for full cycle (positive or negative)?
$\Delta U=0 \Rightarrow Q=-W=$ area of triangle (>0)

Special PV Cases

- Constant Pressure (isobaric)
- Constant Volume

- Constant Temp $\Delta \mathrm{U}=0$
- Adiabatic $\mathrm{Q}=0$

Checkpoints 1-3

Consider a hypothetical device that takes 1000 J of heat from a hot reservoir at 300 K , ejects 200 J of heat to a cold reservoir at 100 K , and produces 800 J of work.

Does this device violate the first law of thermodynamics ?

1. Yes
2. No

Reversible?

- Most "physics" processes are reversible: you could play movie backwards and still looks fine. (drop ball vs throw ball up)
- Exceptions:
\Rightarrow Non-conservative forces (friction)
\rightarrow Heat Flow:
» Heat never flows spontaneously from cold to hot

Summary:

$\rightarrow 1$ st Law of Thermodynamics: Energy Conservation

Heat flow
into system

- point on p-V plot completely specifies state of system (pV = nRT)
- work done is area under curve

- U depends only on $T(U=3 n R T / 2=3 p V / 2)$
- for a complete cycle $\Delta \mathrm{U}=\mathrm{O} \Rightarrow \mathrm{Q}=-\mathrm{W}$

