Physics 101: Lecture 03 Kinematics

A Refresher:

Determine the force exerted by the hand to suspend the 45 kg mass as shown in the picture.
A) 220 N
B) 440 N
C) 660 N

$$
\begin{array}{lll}
\text { D) } 880 \mathrm{~N} & \text { E) } 1100 \mathrm{~N}
\end{array}
$$

Step 1 - Draw!
Step 2 - Forces!

Step 3 - Newton's $2^{\text {nd }}$!

$$
\begin{aligned}
& F_{\mathrm{Net}}=m a=0 \quad \text { equilibrium! } \\
& T+T-W=0
\end{aligned}
$$

-Remember the magnitude of the tension is the same everywhere along the rope!

Force at Angle Example

A person is pushing a 15 kg block across a floor with $\mu_{\mathrm{k}}=0.4$ at a constant speed $(a=0)$. If she is pushing down at an angle of 25 degrees, what is the magnitude of her force on the block?

$$
\begin{aligned}
& \text { X- direction: } \mathrm{F}_{\mathrm{Net}, \mathrm{x}}=\mathrm{ma}_{\mathrm{x}} \\
& \mathrm{P}_{\mathrm{x}}-\mathrm{f}=0 \\
& \mathrm{P} \cos (\theta)-\mu_{\mathrm{k}} \mathrm{~N}=0 \\
& \mathrm{~N}=\mathrm{P} \cos (\theta) / \mu_{\mathrm{k}}
\end{aligned}
$$

y - direction: $F_{N e t, ~}=m a_{y}$
$-W-P_{y}=0$
$-\mathrm{mg}-\mathrm{P} \sin (\theta)=0$
Step 1 - Draw!
Step 2 - Forces!
Step 3 - Newton's $2^{\text {nd }}$!

Combine:

$$
\begin{aligned}
& \left(\mathrm{P} \cos (\theta) / \mu_{\mathrm{k}}\right)-\mathrm{mg}-\mathrm{P} \sin (\theta)=0 \\
& \mathrm{P}\left[\cos (\theta) / \mu_{\mathrm{k}}-\sin (\theta)\right]=\mathrm{mg} \\
& \mathrm{P}=\mathrm{mg} /\left[\cos (\theta) / \mu_{\mathrm{k}}-\sin (\theta)\right]
\end{aligned}
$$

$$
\mathrm{P}=80 \mathrm{~N}
$$

Today: An Overview

- What happens when $\mathrm{a} \neq 0$?
- Kinematics: Description of Motion
\rightarrow Position and Displacement
\rightarrow Velocity
» average
» instantaneous
\rightarrow Acceleration
» average
» instantaneous
\Rightarrow Relative velocity (first pass)

Position vs Time Plots

- DISPLACEMENT is change in position, $\Delta \mathrm{x}=\mathrm{x}_{\mathrm{f}}-\mathrm{x}_{0}$.
- VELOCITY is rate of change of position, $\mathrm{v}=\Delta \mathrm{x} / \Delta \mathrm{t}=$ slope
- Slope between any two points gives average velocity at that point
- Slope of tangent line at any point gives instantaneous velocity at that point. Displacement between $\mathrm{t}=5$ and $\mathrm{t}=1$:

$$
\begin{aligned}
& \Delta x=x_{f}-x_{0} \\
& \Delta x=1.0 m-2.0 m=-1.0 m
\end{aligned}
$$

Average velocity between $\mathrm{t}=5$ and $\mathrm{t}=1 . \mathrm{v}=\Delta \mathrm{x} / \Delta \mathrm{t}$

$$
-1 \mathrm{~m} / 4 \mathrm{~s}=-0.25 \mathrm{~m} / \mathrm{s}
$$

Velocity vs Time Plots

- Gives velocity at any time.
- Area gives displacement
$\rightarrow v=\Delta x / \Delta t \Rightarrow \quad \Delta x=v \Delta t$
- Slope at any point gives instantaneous acceleration.
velocity at $\mathrm{t}=2, \mathrm{v}(2)=3 \mathrm{~m} / \mathrm{s}$
Displacement between $t=0$ and $t=3: \Delta x=7.5 \mathrm{~m}$

$$
\begin{aligned}
& \mathrm{t}=0 \text { to } \mathrm{t}=1: 1 / 2(3 \mathrm{~m} / \mathrm{s})(1 \mathrm{~s})=1.5 \mathrm{~m} \\
& \mathrm{t}=1 \text { to } \mathrm{t}=3:(3 \mathrm{~m} / \mathrm{s})(2 \mathrm{~s})=6 \mathrm{~m}
\end{aligned}
$$

Average velocity between $\mathrm{t}=0$ and $\mathrm{t}=3$? $\mathrm{v}=7.5 \mathrm{~m} / 3 \mathrm{~s}=2.5 \mathrm{~m} / \mathrm{s}$
Change in v between $t=5$ and $\mathrm{t}=3 . \Delta \mathrm{v}=-2 \mathrm{~m} / \mathrm{s}-3 \mathrm{~m} / \mathrm{s}=-5 \mathrm{~m} / \mathrm{s}$
Average acceleration between $\mathrm{t}=5$ and $\mathrm{t}=3: \mathrm{a}=-5 \mathrm{~m} / \mathrm{s} /(2 \mathrm{~s})=-2.5 \mathrm{~m} / \mathrm{s}^{2}$

Acceleration vs Time Plots

- Gives acceleration at any time.

$$
\mathrm{a}=\Delta \mathrm{v} / \Delta \mathrm{t}
$$

- Area gives change in velocity

$$
\mathrm{a}=\Delta \mathrm{v} / \Delta \mathrm{t} \quad \Rightarrow \quad \Delta \mathrm{v}=\mathrm{a} \Delta \mathrm{t}
$$

Acceleration at $\mathrm{t}=4, \mathrm{a}(4)=-2 \mathrm{~m} / \mathrm{s}^{2}$
Change in v between $t=4$ and $t=1 . \Delta v=+4 \mathrm{~m} / \mathrm{s}$

$$
\begin{aligned}
& \mathrm{t}=1-3: \quad \Delta \mathrm{v}=\left(3 \mathrm{~m} / \mathrm{s}^{2}\right)(2 \mathrm{~s})=6 \mathrm{~m} / \mathrm{s} \\
& \mathrm{t}=3-4: \quad \Delta \mathrm{v}=\left(-2 \mathrm{~m} / \mathrm{s}^{2}\right)(1 \mathrm{~s})=-2 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Acceleration Checkpoints

Is it possible for an object to have a positive velocity at the same time as it has a negative acceleration?

1 - Yes
2 - No

If the velocity of some object is not zero, can its acceleration ever be zero ?
1 - Yes
2 - No

Velocity ACT

If the average velocity of a car during a trip along a straight road is positive, is it possible for the instantaneous velocity at some time during the trip to be negative?
A - Yes
B - No

Drive north 5 miles, put car in reverse and drive south 2 miles. Average velocity is positive.

Dropped Ball

- A ball is dropped from a height of two meters above the ground.
- Draw v_{y} vs t

Physics 101: Lecture 3, Pg 10

Dropped Ball

A ball is dropped for a height of two meters above the ground.

- Draw v vs t
- Draw y vs t
- Draw a vs t

Tossed Ball

- A ball is tossed from the ground up a height of two meters above the ground. And falls back down A^{y}
- Draw v vs t

Tossed Ball

- A ball is tossed from the ground up a height of two meters above the ground.
 And falls back down
- Draw v vs t
- Draw y vs t
- Draw a vs t

Physics 101: Lecture 3, Pg 13

ACT

A ball is thrown straight up in the air and returns to its initial position. During the time the ball is in the air, which of the following statements is true?

A - Both average acceleration and average velocity are zero. B - Average acceleration is zero but average velocity is not zero.
C - Average velocity is zero but average acceleration is not zero.
D - Neither average acceleration nor average velocity are zero.

Relative Velocity (first pass)

You are on a train traveling 40 mph North. If you walk 5 mph toward the front of the train, what is your speed relative to the ground?
A) 45 mph
B) 40 mph
C) 35 mph

Relative Velocity

You are on a train traveling 40 mph North. If you walk 5 mph toward the rear of the train, what is your speed relative to the ground?
$\begin{array}{lll}\text { A) } 45 \mathrm{mph} & \text { B) } 40 \mathrm{mph} & \text { C) } 35 \mathrm{mph}\end{array}$

Relative Velocity

You are on a train traveling 40 mph North. If you walk 5 mph sideways across the car, what is your speed relative to the ground?
$\begin{array}{lll}\text { A) }<40 \mathrm{mph} & \text { B) } 40 \mathrm{mph} & \text { C) }>40 \mathrm{mph}\end{array}$

Relative Velocity

- Sometimes your velocity is known relative to a reference frame that is moving relative to the earth.
\rightarrow Example 1: A person moving relative to a train, which is moving relative to the ground.
\rightarrow Example 2: a plane moving relative to air, which is then moving relative to the ground.
- These velocities are related by vector addition:
$>\mathrm{v}_{\mathrm{ac}}$ is the velocity of the object relative to the ground

$$
\overrightarrow{\mathrm{V}}_{\mathrm{ac}}=\overrightarrow{\mathrm{V}}_{\mathrm{ab}}+\overrightarrow{\mathrm{V}}_{\mathrm{bc}}
$$

 $\overrightarrow{\mathrm{V}}_{\mathrm{ac}}=\overrightarrow{\mathrm{V}}_{\mathrm{ab}}+\overrightarrow{\mathrm{V}}_{\mathrm{bc}}$

 $\overrightarrow{\mathrm{V}}_{\mathrm{ac}}=\overrightarrow{\mathrm{V}}_{\mathrm{ab}}+\overrightarrow{\mathrm{V}}_{\mathrm{bc}}$}$» \mathbf{v}_{\mathrm{ab}}$ is the velocity of the object relative to a moving reference frame
v_{bc} is the velocity of the moving
reference frame relative to the ground

Tractor Demo 1

Which direction should I point the tractor to get it across the table fastest?
A) 30 degrees left
B) Straight across
C) 30 degrees right

Tractor Demo (moving table)

- Which direction should I point the tractor to get it across the table fastest?
A) 30 degrees left
B) Straight across
C) 30 degrees right

Summary of Concepts

- kinematics: A description of motion
- position: your coordinates
- displacement: $\Delta \mathrm{x}=$ change of position
- velocity: rate of change of position
\rightarrow average : $\Delta \mathrm{x} / \Delta \mathrm{t}$
\rightarrow instantaneous: slope of x vs. t
- acceleration: rate of change of velocity
\rightarrow average: $\Delta \mathrm{v} / \Delta \mathrm{t}$
\rightarrow instantaneous: slope of v vs. t
- relative velocity: $\mathrm{v}_{\mathrm{ac}}=\mathrm{v}_{\mathrm{ab}}+\mathrm{v}_{\mathrm{bc}}$

