Physics 101: Lecture 03 Kinematics

Today's lecture will cover Textbook Sections 3.1-3.3 (and some Ch. 4)

A Refresher:

Determine the force exerted by the hand to suspend the 45 kg mass as shown in the picture.

A) 220 N B) 440 N C) 660 N

D) 880 N E) 1100 N

- Step 1 Draw!
- Step 2 Forces!
- Step 3 Newton's 2nd!

 $F_{Net} = ma = 0$ equilibrium!

 $\mathbf{T} + \mathbf{T} - \mathbf{W} = \mathbf{0}$

• Remember the magnitude of the tension is the same everywhere along the rope!

Force at Angle Example

A person is pushing a 15 kg block across a floor with $\mu_k = 0.4$ at a *constant speed* (*a=0*). If she is pushing down at an angle of 25 degrees, what is the magnitude of her force on the block?

• What happens when $a \neq 0$?

• Kinematics: Description of Motion → Position and Displacement \rightarrow Velocity » average » instantaneous \rightarrow Acceleration » average » instantaneous \rightarrow Relative velocity (first pass)

- <u>DISPLACEMENT</u> is change in position, $\Delta x = x_f - x_0$.
- <u>VELOCITY</u> is rate of change of position, $v = \Delta x / \Delta t = slope$
- Slope between any two points gives average velocity at that point
- Slope of tangent line at any point givesinstantaneous velocity at that point.

Displacement between t=5 and t=1:

 $\Delta x = x_f - \overline{x_0}$ $\Delta x = 1.0 \text{ m} - 2.0 \text{ m} = -1.0 \text{ m}$

<u>Average</u> velocity between t=5 and t=1. v = $\Delta x/\Delta t$ -1 m / 4 s = -0.25 m/s

Velocity vs Time Plots

• Gives velocity at any time.

• Area gives displacement

 \rightarrow v = Δ x/ Δ t => Δ x = v Δ t

• Slope at any point gives <u>instantaneous</u> acceleration.

velocity at t=2, v(2) = 3 m/s

Displacement between t=0 and t=3: $\Delta x = 7.5$ m⁻

t=0 to t=1: $\frac{1}{2}$ (3m/s) (1 s) = 1.5 m

t=1 to t=3: (3m/s)(2s) = 6mAverage velocity between t=0 and t=3? v= 7.5 m / 3s = 2.5 m/s

Change in v between t=5 and t=3. $\Delta v = -2 \text{ m/s} - 3 \text{ m/s} = -5 \text{ m/s}$

<u>Average</u> acceleration between t=5 and t=3: $a = -5 \text{ m/s} / (2 \text{ s}) = -2.5 \text{ m/s}^2$ Physics 101: Lecture 3, Pg 6

Acceleration vs Time Plots

• Gives acceleration at any time. $a = \Delta v / \Delta t$ • Area gives change in velocity $a = \Delta v / \Delta t \implies \Delta v = a \Delta t$ Acceleration at t=4, $a(4) = -2 \text{ m/s}^2$ Change in v between t=4 and t=1. $\Delta v = +4 \text{ m/s}$ $t=1-3: \Delta v = (3m/s^2)(2s) = 6 m/s$ t=3-4: $\Delta v = (-2m/s^2)(1s) = -2 m/s$

Acceleration Checkpoints

Is it possible for an object to have a positive velocity at the same time as it has a negative acceleration?

- 1 Yes
- 2 No

If the velocity of some object is not zero, can its acceleration ever be zero ?

- 1 Yes
- 2 No

Velocity ACT

If the average velocity of a car during a trip along a straight road is positive, is it possible for the instantaneous velocity at some time during the trip to be negative?

A - Yes B - No

Drive north 5 miles, put car in reverse and drive south 2 miles. Average velocity is positive.

Dropped Ball

v V

X

•A ball is dropped from a height of two meters above the ground.

Dropped Ball

A ball is dropped for a height of two meters above the ground.

Draw v vs t
Draw y vs t
Draw a vs t

Tossed Ball

•A ball is tossed from the ground up a height of two meters above the ground. And falls back down

• Draw v vs t

Tossed Ball

•A ball is tossed from the ground up a height of two meters above the ground. And falls back down

• Draw v vs t

• Draw y vs t

• Draw a vs t

ACT

A ball is thrown straight up in the air and returns to its initial position. During the time the ball is in the air, which of the following statements is true?

A - Both average acceleration and average velocity are zero.
B - Average acceleration is zero but average velocity is not zero.
C - Average velocity is zero but average acceleration is not zero.
D - Neither average acceleration nor average velocity are zero.

Relative Velocity (first pass) You are on a train traveling 40 mph North. If you walk 5 mph toward the front of the train, what is your speed relative to the ground?

A) 45 mph B) 40 mph C) 35 mph

Relative Velocity

You are on a train traveling 40 mph North. If you walk 5 mph toward the rear of the train, what is your speed relative to the ground?

A) 45 mph B) 40 mph C) 35 mph

Relative Velocity

You are on a train traveling 40 mph North. If you walk 5 mph sideways across the car, what is your speed relative to the ground?

A) < 40 mph B) 40 mph C) >40 mph

Relative Velocity

- Sometimes your velocity is known relative to a reference frame that is moving relative to the earth.
 - Example 1: A person moving relative to a train, which is moving relative to the ground.
 - Example 2: a plane moving relative to air, which is then moving relative to the ground.
- These velocities are related by vector addition:

$$\vec{v}_{ac} = \vec{v}_{ab} + \vec{v}_{bc}$$

- $\gg v_{ac}$ is the velocity of the object relative to the ground
- » v_{ab} is the velocity of the object relative to a moving reference frame
- » v_{bc} is the velocity of the moving reference frame relative to the ground

Tractor Demo 1

Which direction should I point the tractor to get it across the table fastest?

A) 30 degrees leftB) Straight acrossC) 30 degrees right

Tractor Demo (moving table)

• Which direction should I point the tractor to get it across the table fastest?

A) 30 degrees leftB) Straight acrossC) 30 degrees right

1 2 3

Summary of Concepts

- kinematics: A description of motion
- position: your coordinates
- displacement: $\Delta x =$ change of position
- velocity: rate of change of position
 - \rightarrow average : $\Delta x/\Delta t$
 - \rightarrow instantaneous: slope of x vs. t
- acceleration: rate of change of velocity
 - \rightarrow average: $\Delta v/\Delta t$
 - \rightarrow instantaneous: slope of v vs. t
- relative velocity: $v_{ac} = v_{ab} + v_{bc}$