Physics 101: Lecture 04 Kinematics + Dynamics

- Today's lecture will cover Textbook Chapter 4

If you are new to the course, please read the course description on the course web page.

Neptune

- Kinematics : Description of Motion

Checkpoint

...interpreting graphs...

-Which x vs t plot shows positive acceleration?

Overview

Week 1!

Apply Newton's 2 $^{\text {nd }}$ Law to determine acceleration

$$
\vec{F}_{N e t}=m \vec{a}
$$

Use Kinematics to determine/describe motion of the object

Physics 101: Lecture 4, Pg 4

Equations for Constant Acceleration (text, page 124-125)

$$
\begin{aligned}
& x=x_{0}+v_{0} t+1 / 2 a t^{2} \\
& v=v_{0}+a t \\
& v^{2}=v_{0}^{2}+2 a\left(x-x_{0}\right)
\end{aligned}
$$

Use these equations to predict the future path and speed of an object under constant acceleration!

$\mathrm{v}(\mathrm{m} / \mathrm{s})$

Kinematics Example

- A car is traveling $30 \mathrm{~m} / \mathrm{s}$ and applies its breaks to stop after a distance of 150 m .
- How fast is the car going after it has traveled $1 / 2$ the distance (75 meters) ?
A) $\mathrm{v}<15 \mathrm{~m} / \mathrm{s}$
B) $v=15 \mathrm{~m} / \mathrm{s}$
C) $v>15 \mathrm{~m} / \mathrm{s}$

$$
\begin{aligned}
& x=x_{0}+v_{0} t+1 / 2 a t^{2} \\
& v=v_{0}+a t \\
& v^{2}=v_{0}^{2}+2 a\left(x-x_{0}\right)
\end{aligned}
$$

Acceleration ACT

A car accelerates uniformly from rest $\left(\mathrm{v}_{0}=0\right)$. If it travels a distance D in time t then how far will it travel in a time 2 t ?
A. D/4
B. $D / 2$
C. D
D. 2D
E. 4D

$$
\begin{aligned}
& x-x_{0}=1 / 2 a t^{2} \\
& v=a t \\
& v^{2}=2 a\left(x-x_{0}\right)
\end{aligned}
$$

Follow up question: If the car has speed v at time t then what is the speed at time 2 t ?
A. v/4
B. $\mathrm{v} / 2$
C. v
D. 2 v
E. $4 v$

Overview

Next!

Apply Newton's $2^{\text {nd }}$ Law to determine acceleration

$$
\vec{F}_{N e t}=m \vec{a}
$$

Use Kinematics to determine/describe motion of the object

ACT

- A force F acting on a mass m_{I} results in an acceleration a_{1}. The same force acting on a different mass m_{2} results in an acceleration $a_{2}=2 a_{1}$. What is the mass m_{2} ?

(A) $2 m_{1}$
(B) m_{1}
(C) $1 / 2 m_{1}$

Example:

A tractor $\mathrm{T}(\mathrm{m}=300 \mathrm{Kg})$ is pulling a trailer $\mathrm{M}(\mathrm{m}=400 \mathrm{Kg})$. It starts from rest and pulls with constant force such that there is a positive acceleration of $1.5 \mathrm{~m} / \mathrm{s}^{2}$. Calculate the horizontal thrust force on the tractor due to the ground.

Tractor - x direction
$\mathrm{F}_{\mathrm{Net}}=\mathrm{ma}$
$\mathrm{F}_{\mathrm{Th}}-\mathrm{T}=\mathrm{m}_{\text {tractor }} \mathrm{a}$
$\mathrm{F}_{\mathrm{Th}}=\mathrm{T}+\mathrm{m}_{\text {tractor }} \mathrm{a}^{\mathrm{a}}$
Traiker - x direction
$\mathrm{F}_{\mathrm{Net}}=\mathrm{ma}$
$\mathrm{T}=\mathrm{m}_{\text {trailer }} \mathrm{a}$

$$
\mathrm{F}_{\mathrm{Th}}=1050 \mathrm{~N}
$$

Combine:

$\mathrm{F}_{\mathrm{Th}}=\mathrm{m}_{\text {trailer }} \mathrm{a}+\mathrm{m}_{\text {tractor }} \mathrm{a}$
$\mathrm{F}_{\mathrm{Th}}=\left(\mathrm{m}_{\text {trailer }+} \mathrm{m}_{\text {tractor }}\right) \mathrm{a}$
Physics 101: Lecture 4, Pg 10

Net Force ACT

Compare $F_{\text {tractor }}$ the net force on the tractor, with $\mathrm{F}_{\text {trailer }}$ the net force on the trailer from the previous problem.
A) $F_{\text {tractor }}>F_{\text {trailor }}$
B) $F_{\text {tractor }}=F_{\text {trailor }}$
C) $\mathrm{F}_{\text {tractor }}<\mathrm{F}_{\text {trailor }}$

Overview

Next!

Draw a FBD to determine $\mathrm{F}_{\mathrm{Net}}$

Apply Newton's $2^{\text {nd }}$ Law to determine acceleration

Use Kinematics to determine/describe motion of the object

Pulley Example

- Two boxes are connected by a string over a frictionless pulley. Box 1 has mass 1.5 kg , box 2 has a mass of 2.5 kg . Box 2 starts from rest 0.8 meters above the table, how long does it take to hit the table.
-Compare the acceleration of boxes 1 and 2

$$
\text { A) }\left|a_{1}\right|>\left|a_{2}\right| \quad \text { B) }\left|a_{1}\right|=\left|a_{2}\right| \quad \text { C) }\left|a_{1}\right|<\left|a_{2}\right|
$$

1) $\mathrm{T}-\mathrm{m}_{1} \mathrm{~g}=\mathrm{m}_{1} \mathrm{a}_{1}$
2) $T-m_{2} g=-m_{2} a_{1}$
3) $T=m_{2} g-m_{2} a_{1}$
4) $m_{2} g-m_{2} a_{1}-m_{1} g=m_{1} a_{1}$
$a_{1}=\left(m_{2}-m_{1}\right) g /\left(m_{1}+m_{2}\right)$

Pulley Example

- Two boxes are connected by a string over a frictionless pulley. Box 1 has mass 1.5 kg , box 2 has a mass of 2.5 kg . Box 2 starts from rest 0.8 meters above the table, how long does it take to hit the table.
-Compare the acceleration of boxes 1 and 2

$$
\text { A) }\left|a_{1}\right|>\left|a_{2}\right| \quad \text { B) }\left|a_{1}\right|=\left|a_{2}\right|
$$

$$
\text { C) }\left|a_{1}\right|<\left|a_{2}\right|
$$

$\mathrm{a}_{1}=\left(\mathrm{m}_{2}-\mathrm{m}_{1}\right) \mathrm{g} /\left(\mathrm{m}_{1}+\mathrm{m}_{2}\right)$
$\mathrm{a}=2.45 \mathrm{~m} / \mathrm{s}^{2}$
$\Delta \mathrm{x}=\mathrm{v}_{0} \mathrm{t}+1 / 2 \mathrm{at} \mathrm{t}^{2}$
$\Delta x=1 / 2 a t^{2}$
$\mathrm{t}=\operatorname{sqrt}(2 \Delta \mathrm{x} / \mathrm{a})$
$\mathrm{t}=0.81$ seconds

Summary of Concepts

- Constant Acceleration

$$
\begin{aligned}
& >\mathrm{x}=\mathrm{x}_{0}+\mathrm{v}_{0} \mathrm{t}+1 / 2 \mathrm{at}^{2} \\
& >\mathrm{v}=\mathrm{v}_{0}+\mathrm{at} \\
& >\mathrm{v}^{2}=\mathrm{v}_{0}^{2}+2 \mathrm{a}\left(\mathrm{x}-\mathrm{x}_{0}\right)
\end{aligned}
$$

- $F=m a$
- Draw Free Body Diagram
- Write down equations
- Solve
- Next time: textbook section 4.3, 4.5

