Physics 101: Lecture 04 Kinematics + Dynamics

Today's lecture will cover Textbook Chapter 4

If you are new to the course, please read the course description on the course web page.

Neptune

Review

• Kinematics : Description of Motion

Checkpoint ...interpreting graphs...

•Which x vs t plot shows positive acceleration?

Overview

Equations for Constant Acceleration (text, page 124-125)

• $\mathbf{x} = \mathbf{x}_0 + \mathbf{v}_0 \mathbf{t} + 1/2 \ \mathrm{at}^2$

•
$$v = v_0 + at$$

•
$$v^2 = v_0^2 + 2a(x-x_0)$$

Use these equations to predict the future path and speed of an object under constant acceleration!

Kinematics Example

- A car is traveling 30 m/s and applies its breaks to stop after a distance of 150 m.
- How fast is the car going after it has traveled ¹/₂ the distance (75 meters) ?
- A) v < 15 m/s

B) v = 15 m/s

C) v > 15 m/s

• $\mathbf{x} = \mathbf{x}_0 + \mathbf{v}_0 \mathbf{t} + 1/2 \ \mathrm{at}^2$

•
$$v = v_0 + at$$

• $v^2 = v_0^2 + 2a(x-x_0)$

Acceleration ACT

A car accelerates uniformly from rest ($v_0 = 0$). If it travels a distance D in time t then how far will it travel in a time 2t ?

A. D/4 B. D/2 C. D D. 2D E. 4D

$$x - x_0 = 1/2 at^2$$

 $v = at$
 $v^2 = 2a(x-x_0)$

Follow up question: If the car has speed v at time t then what is the speed at time 2t?

A. v/4 B. v/2 C. v D. 2v E. 4v

Overview

ACT

• A force **F** acting on a mass m_1 results in an acceleration a_1 . The same force acting on a different mass m_2 results in an acceleration $a_2 = 2a_1$. What is the mass m_2 ?

(A) $2m_1$ (B) m_1 (C) $1/2 m_1$

A tractor T (m=300Kg) is pulling a trailer M (m=400Kg). It starts from rest and pulls with constant force such that there is a positive acceleration of 1.5 m/s². Calculate the horizontal thrust force on the tractor due to the ground.

Tractor – x direction $F_{Net} = ma$ $F_{Th} - T = m_{tractor}a$ $F_{Th} = T + m_{tractor}a$ Trailer -x direction ma m_{trailer}a

 $F_{Th} = 1050 N$

Net Force ACT

Compare $F_{tractor}$ the net force on the tractor, with $F_{trailer}$ the net force on the trailer from the previous problem.

A) F_{tractor} > F_{trailor}
B) F_{tractor} = F_{trailor}
C) F_{tractor} < F_{trailor}

Overview

Pulley Example

• Two boxes are connected by a string over a frictionless pulley. Box 1 has mass 1.5 kg, box 2 has a mass of 2.5 kg. Box 2 starts from rest 0.8 meters above the table, how long does it take to hit the table.

Pulley Example

• Two boxes are connected by a string over a frictionless pulley. Box 1 has mass 1.5 kg, box 2 has a mass of 2.5 kg. Box 2 starts from rest 0.8 meters above the table, how long does it take to hit the table.

•Compare the acceleration of boxes 1 and 2

A) $|a_1| > |a_2|$ B) $|a_1| = |a_2|$

 $a_{1} = (m_{2} - m_{1})g / (m_{1} + m_{2})$ $a = 2.45 \text{ m/s}^{2}$ $\Delta x = v_{0}t + \frac{1}{2} a t^{2}$ $\Delta x = \frac{1}{2} a t^{2}$ $t = \text{sqrt}(2 \Delta x/a)$ t = 0.81 seconds

Summary of Concepts

- Constant Acceleration
 - > $x = x_0 + v_0 t + 1/2 at^2$
 - \succ v = v₀ + at
 - $> v^2 = v_0^2 + 2a(x-x_0)$
- F = m a
 - Draw Free Body Diagram
 - Write down equations
 - Solve
 - Next time: textbook section 4.3, 4.5