Physics 101: Lecture 07
 More Constant Acceleration and Relative Velocity

-Textbook chapter 4.

Last Time

- X and Y directions are Independent!
\rightarrow Position, velocity and acceleration are vectors
- $\mathrm{F}_{\mathrm{Net}}=\mathrm{m}$ a applies in both x and y direction
- Projectile Motion
$\Rightarrow \mathrm{a}_{\mathrm{x}}=0$ in horizontal direction
$\Rightarrow a_{y}=-g$ in vertical direction

Today

- More 2-D Examples
- Newton's $3^{\text {rd }}$ Law Review
- Relative Motion

Pulley, Incline and 2 blocks

A block of mass $m_{1}=2.6 \mathrm{~kg}$ rests upon a frictionless incline as shown and is connected to mass m_{1} via a flexible cord over an ideal pulley. What is the acceleration of block m_{1} if $m_{2}=2.0 \mathrm{~kg}$?

X - direction $\mathrm{F}_{\text {Net, } \mathrm{x}}=\mathrm{m} \mathrm{a}_{\mathrm{x}}$:

Block 1:

Combine

$$
\begin{aligned}
& T-m_{1} g \sin (30)=m_{1} a_{1 x} \\
& T=m_{1} g \sin (30)+m_{1} a_{1 x}
\end{aligned}
$$

Y - direction $\mathrm{F}_{\text {Net, } \mathrm{y}}=\mathrm{m} \mathrm{a} \mathrm{a}_{\mathrm{y}}$: Block 2:

$$
T-m_{2} g=m_{2} a_{2 v}
$$

Note:

$$
a_{1 x}=-a_{2 y}
$$

Newton's Third Law

\Rightarrow For every action, there is an equal and opposite reaction.

- Finger pushes on box
- $\mathrm{F}_{\text {finger } \rightarrow \text { box }}=$ force exerted on box by finger
$\mathrm{F}_{\text {box } \rightarrow \text { finger }}$
- Box pushes on finger

- $\mathrm{F}_{\text {box } \rightarrow \text { finger }}=$ force exerted on finger by box
- Third Law:

$$
\mathbf{F}_{\text {box } \rightarrow \text { finger }}=-\mathbf{F}_{\text {finger } \rightarrow \text { box }}
$$

Newton's 3 ${ }^{\text {rd }}$ Law

Suppose you are an astronaut in outer space giving a brief push to a spacecraft whose mass is bigger than your own.

1) Compare the magnitude of the force you exert on the spacecraft, F_{S}, to the magnitude of the force exerted by the spacecraft on you, F_{A}, while you are pushing:
1. $\mathrm{F}_{\mathrm{A}}=\mathrm{F}_{\mathrm{S}}$
2. $\mathrm{F}_{\mathrm{A}}>\mathrm{F}_{\mathrm{S}}$
3. $\mathrm{F}_{\mathrm{A}}<\mathrm{F}_{\mathrm{S}}$
2) Compare the magnitudes of the acceleration you experience, a_{A}, to the magnitude of the acceleration of the spacecraft, a_{S}, while you are pushing:
1. $a_{A}=a_{S}$
2. $a_{A}>a_{S}$
3. $a_{A}<a_{S}$

Newton's $3^{\text {rd }}$ Example

${ }^{\mathrm{y}}$
A rope attached to box 1 is accelerating it to the right at a rate of $3 \mathrm{~m} / \mathrm{s}^{2}$ on a frictionless table. Friction keeps block 2 on top of block 1 w/o slipping. What is the tension in the rope?

X-direction: $\mathrm{F}=\mathrm{ma}$
Block 2: $f_{21}=m_{2} a_{2}$
Block 1: $\mathrm{T}-\mathrm{f}_{12}=\mathrm{m}_{1} \mathrm{a}_{1}$
N3L says $\left|f_{12}\right|=\left|f_{21}\right|$
Combine: $\mathrm{T}-\mathrm{m}_{2} \mathrm{a}_{2}=\mathrm{m}_{1} \mathrm{a}_{1}$

$$
\begin{aligned}
\mathrm{T} & =\mathrm{m}_{1} \mathrm{a}_{1}+\mathrm{m}_{2} \mathrm{a}_{2} \\
& =\left(\mathrm{m}_{1}+\mathrm{m}_{2}\right) \mathrm{a}
\end{aligned}
$$

Relative Velocity

- Sometimes your velocity is known relative to a reference frame that is moving relative to the earth.
\rightarrow Example 1: A person moving relative to a train, which is moving relative to the ground.
\rightarrow Example 2: a plane moving relative to air, which is then moving relative to the ground.
- These velocities are related by vector addition:
$\overrightarrow{\mathrm{V}}_{\mathrm{ac}}=\overrightarrow{\mathrm{V}}_{\mathrm{ab}}+\overrightarrow{\mathrm{V}}_{\mathrm{bc}}$
\mathbf{v}_{ac} is the velocity of the object relative to the ground
v_{ab} is the velocity of the object relative to a moving reference frame
v_{bc} is the velocity of the moving reference frame relative to the ground

Checkpoint

Three swimmers can swim equally fast relative to the water. They x have a race to see who can swim across a river in the least time. Relative to the water, Beth (B) swims perpendicular to the flow, Ann (A) swims upstream, and Carly (C) swims downstream. Which swimmer wins the race?
A) Ann
B) Beth
C) Carly

ACT

Three swimmers can swim equally fast relative to the water. They have a race to see who can swim across a river in the least time. Relative to the water, Beth (B) swims perpendicular to the flow, Ann (A) swims upstream, and Carly (C) swims downstream. Who gets second? Ann or Carly?
A) Ann
B) Same
C) Carly

Swimmer Example

What angle should Ann take to get directly to the other side if she can swim 5 mph relative to the water, and the river is flowing at 3 mph ?

$$
\vec{V}_{\text {Net }}=\vec{V}_{\text {Ann }}+\vec{V}_{\text {water }}
$$

x-direction

$0=-V_{\text {Ann, } \mathrm{x}}+\mathrm{V}_{\text {water }}$
$0=-V_{\text {Ann }} \sin (\theta)+3$
$5 \sin (\theta)=3$
$\sin (\theta)=3 / 5 \Rightarrow \theta=37^{\circ}$

Physics 101: Lecture 7, Pg 11

Think of a swimming pool on a cruise ship

Demo - bulldozer

Summary of Concepts

- X and Y directions are Independent!
\rightarrow Position, velocity and acceleration are vectors
- $\mathrm{F}_{\text {Net }}=\mathrm{m}$ a applies in both x and y direction
- Newton's $3^{\text {rd }}$ Law
- Relative Motion (Add vector components)

$$
\overrightarrow{\mathrm{v}}_{\mathrm{sg}}=\overrightarrow{\mathrm{v}}_{\mathrm{sw}}+\overrightarrow{\mathrm{v}}_{\mathrm{wg}}
$$

