Physics 101: Lecture 08 Centripetal Acceleration and Circular Motion

- Today's lecture will cover Chapter 5

Physics 101: Lecture 8, Pg 1

Circular Motion Act

Answer: B

A ball is going around in a circle attached to a string. If the string breaks at the instant shown, which path will the ball follow (demo)?

Acceleration in Uniform Circular Motion

$$
\begin{aligned}
& \Delta \boldsymbol{v} \\
& \mathbf{a}_{\mathrm{ave}}=\Delta \mathrm{v} / \Delta \mathrm{t}
\end{aligned}
$$

Centripetal Acceleration Directed radially inward!

Acceleration inward
Acceleration is due to change in direction, not speed. Since the object turns "toward" center, there must be a force toward center: "Centripetal Force"

Checkpoint

Consider the following situation: You are driving a car with constant speed around a horizontal circular track. On a piece of paper, draw a Free Body Diagram (FBD) for the car. How many forces are acting on the car?
A) 1
B) 2
C) 3
D) 4
E) 5

"Centripetal Force" is NOT an additional force!

Draw your FBD as normal, and one of the forces will be the Centripetal Force!

Checkpoint

Consider the following situation: You are driving a car with constant speed around a horizontal circular track. On a piece of paper, draw a Free Body Diagram (FBD) for the car. The net force on the car is
A. Zero
B. Pointing radially inward
C. Pointing radially outward

ACT

Suppose you are driving through a valley whose bottom has a circular shape. If your mass is m , what is the magnitude of the normal force F_{N} exerted on you by the car seat as you drive past the bottom of the hill
A. $\mathrm{F}_{\mathrm{N}}<\mathrm{mg}$
B. $\mathrm{F}_{\mathrm{N}}=\mathrm{mg}$
C. $\mathrm{F}_{\mathrm{N}}>\mathrm{mg}$

Roller Coaster Example

What is the minimum speed you must have at the top of a 20 meter roller coaster loop, to keep the wheels on the track?

Y Direction: $\mathrm{F}_{\mathrm{Net}}=\mathrm{ma}$

$$
-\mathrm{N}-\mathrm{mg}=\mathrm{ma}=\mathrm{m} \mathrm{v}^{2} / \mathrm{R}
$$

Let $\mathrm{N}=0$, just touching

$$
\begin{aligned}
-\mathrm{mg} & =-\mathrm{m} \mathrm{v}^{2} / \mathrm{R} \\
\mathrm{~g} & =\mathrm{v}^{2} / \mathrm{R} \\
\mathrm{v} & =\operatorname{sqrt}(\mathrm{g} * \mathrm{R})=9.9 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Physics 101: Lecture 8, Pg 8

Circular Motion

- Angular displacement $\Delta \theta=\theta_{2}-\theta_{1}$
\rightarrow How far it has rotated
\rightarrow Units radians ($2 \pi=1$ revolution)
- Angular velocity $\omega=\Delta \theta / \Delta t$
\rightarrow How fast it is rotating
\rightarrow Units radians/second
- Period =1/frequency $T=1 / f=2 \pi / \omega$
\rightarrow Time to complete 1 revolution

Circular to Linear

- Displacement $\Delta s=r \Delta \theta$ (θ in radians)
- Speed $|v|=\Delta s / \Delta t=r \Delta \theta / \Delta t=r \omega$
- Direction of v is tangent to circle

Physics 101: Lecture 8, Pg 10

Merry-Go-Round ACT

- Bonnie sits on the outer rim of a merry-go-round with radius 3 meters, and Klyde sits midway between the center and the rim. The merry-go-round makes one complete revolution every two seconds (demo).
\rightarrow Klyde's speed is:
(a) the same as Bonnie's
(b) twice Bonnie's
(c) half Bonnie's

Merry-Go-Round ACT II

- Bonnie sits on the outer rim of a merry-go-round, and Klyde sits midway between the center and the rim. The merry-goround makes one complete revolution every two seconds.
\rightarrow Klyde's angular velocity is:
(a) the same as Bonnie's
(b) twice Bonnie's
(c) half Bonnie's

Angular Acceleration

- Angular acceleration is the change in angular velocity ω divided by the change in time.

$$
\alpha \equiv \frac{\omega_{f}-\omega_{0}}{\Delta t}
$$

- If the speed of a roller coaster car is $15 \mathrm{~m} / \mathrm{s}$ at the top of a 20 m loop, and $25 \mathrm{~m} / \mathrm{s}$ at the bottom. What is the cars average angular acceleration if it takes 1.6 seconds to go from the top to the bottom?

$$
\bar{\alpha} \equiv \frac{2.5-1.5}{1.6}=0.64 \mathrm{rad} / \mathrm{s}^{2}
$$

Summary (with comparison to 1-D kinematics)

Angular	Linear
$\alpha=$ constant	$a=$ constant
$\omega=\omega_{0}+\alpha t$	$v=v_{0}+a t$
$\theta=\theta_{0}+\omega_{0} t+\frac{1}{2} \alpha t^{2}$	$x=x_{0}+v_{0} t+\frac{1}{2} a t^{2}$

And for a point at a distance R from the rotation axis:

$$
x=R \theta \quad v=\omega R \quad a=\alpha R
$$

CD Player Example

- The CD in a disk player spins at about 20 radians/second. If it accelerates uniformly from rest with angular acceleration of 15 $\mathrm{rad} / \mathrm{s}^{2}$, how many revolutions does the disk make before it is at the proper speed?

$$
\begin{array}{l|l}
\omega_{0}=0 & \omega_{f}^{2}=\omega_{0}^{2}+2 \alpha \Delta \theta \\
\omega_{f}=20 \mathrm{rad} / \mathrm{s} & \omega_{f}^{2}-\omega_{0}^{2} \\
\alpha=15 \mathrm{rad} / \mathrm{s}^{2} & \frac{2 \alpha}{2 \alpha}=\Delta \theta \\
\Delta \theta=? & \frac{20^{2}-0^{2}}{2 \times 15}=\Delta \theta
\end{array}
$$

$\Delta \theta=13.3$ radians
1 Revolutions $=2 \pi$ radians
$\Delta \theta=13.3$ radians
$=2.12$ revolutions

Summary of Concepts

- Uniform Circular Motion
\rightarrow Speed is constant
\rightarrow Direction is changing
\Rightarrow Acceleration toward center $a=v^{2} / r$
\rightarrow Newton's Second Law F = ma
- Circular Motion
$\rightarrow \theta=$ angular position radians
$\Rightarrow \omega=$ angular velocity radians/second
$\Rightarrow \alpha=$ angular acceleration radians/second ${ }^{2}$
\rightarrow Linear to Circular conversions $s=r \theta$
- Uniform Circular Acceleration Kinematics
\rightarrow Similar to linear!

