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Lecture 15:
Time-Dependent QM & Tunneling

Review and Examples, Ammonia Maser
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Special (Optional) Lecture

“Quantum Information”

� One of the most modern applications of QM

� quantum computing

� quantum communication – cryptography, teleportation

� quantum metrology

� nonlocality

� Prof. Kwiat will give a special 214-level lecture on this topic

� Sunday, Sept. 29

� 3 pm, 141 Loomis

� Attendance is optional, but encouraged.
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L14: Particle Motion in a WellL14: Particle Motion in a Well

The frequency of oscillation  is ω = ω2-ω1 = (E2-E1)/ℏ,  or f = (E2-E1)/h.   
This is precisely the frequency of a photon that would make a 

transition between the two states.

So, |Ψ(x,t)|2 oscillates between:

i -ie e 2cosθ θ+ = θ
We used the identity:

The probability density is given by: |Ψ(x,t)|2 :

1 2 21 2 1

2 2 2 2 cos(( )t)(x, t) ψ ψ ω − ωΨ = ψ + ψ +
Interference term

2 2

1 2( , ) ( )x tΨ = ψ + ψ
Particle localized on left side of well:

|Ψ(x,t+)|2

0 xL

Probability

In phase: (cos = +1)

Particle localized on right side of well:

|Ψ(x,t-)|2

0 xL

Out of phase: (cos = -1)
2 2

1 2( , ) ( )x tΨ = ψ − ψ
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Example

An electron in an infinite square well of 

width L = 0.5 nm is (at t=0) described by 

the following wave function: 

Determine the time it takes for the particle 

to move to the right side of the well.

2 2
( , 0) sin sinx t A x x

L L L

π π    Ψ = = +    
    
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Solution

Determine the time it takes for the particle 

to move to the right side of the well.

|Ψ(x,t)|2

U=∞ U=∞

0 xL

|Ψ(x,0)|2

U=∞ U=∞

0 xL

( ) ( )
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T = 1/f , where f = (E2-E1)/h 

2
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E

⋅
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Half a period.

An electron in an infinite square well of 

width L = 0.5 nm is (at t=0) described by 

the following wave function: 

2 2
( , 0) sin sinx t A x x

L L L

π π    Ψ = = +    
    
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L14: Measurements of Energy

What happens when we measure the energy of a particle whose 
wave function is a superposition of more than one energy state?

If the wave function is in an energy eigenstate (E1, say), then we 
know with certainty that we will obtain E1 (unless the apparatus is broken).  

If the wave function is a superposition (ψ = aψ1+bψ2) of energies E1 and E2, 
then we aren’t certain what the result will be.  However:

We know with certainty that we will only obtain E1 or E2 !!

To be specific, we will never obtain (E1+E2)/2, or any other value.

What about a and b?

|a|2 and |b|2 are the probabilities of obtaining E1 and E2, respectively.

That’s why we normalize the wave function to make |a|2 + |b|2 =1.
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ACT 1

An electron in an infinite square well of width 

L = 0.5 nm is (at t=0) described by the following 

wave function: 

2 2
( , 0) sin sinx t A x x

L L L

π π    Ψ = = +    
    

1) Suppose we measure the energy.

What results might we obtain?

a) E1 b) E2 c) E3 d) Any result between

E1 and E2

2) How do the probabilities of the various results depend on time?

a) They oscillate with f = (E2-E1)/h

b) They vary in an unpredictable manner.

c) They alternate between E1 and E2.

(i.e., it’s always either E1 or E2).

d) They don’t vary with time.

|Ψ(x,t)|2

U=∞ U=∞

0 xL

|Ψ(x,0)|2

U=∞ U=∞

0 xL
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Solution

|Ψ(x,t)|2

U=∞ U=∞

0 xL

|Ψ(x,0)|2

U=∞ U=∞

0 xL

An electron in an infinite square well of width 

L = 0.5 nm is (at t=0) described by the following 

wave function: 

2 2
( , 0) sin sinx t A x x

L L L

π π    Ψ = = +    
    

1) Suppose we measure the energy.

What results might we obtain?

a) E1 b) E2 c) E3 d) Any result between

E1 and E2

2) How do the probabilities of the various results depend on time?

a) They oscillate with f = (E2-E1)/h

b) They vary in an unpredictable manner.

c) They alternate between E1 and E2.

(i.e., it’s always either E1 or E2).

d) They don’t vary with time.

We will only obtain results that correspond to the terms 

appearing in Ψ.  Therefore, only E1 and E2 are possible.



Lecture 15, p.9

Solution

1) Suppose we measure the energy.

What results might we obtain?

a) E1 b) E2 c) E3 d) Any result between

E1 and E2

2) How do the probabilities of the various results depend on time?

a) They oscillate with f = (E2-E1)/h

b) They vary in an unpredictable manner.

c) They alternate between E1 and E2.

(i.e., it’s always either E1 or E2).

d) They don’t vary with time.

|Ψ(x,t)|2

U=∞ U=∞

0 xL

|Ψ(x,0)|2

U=∞ U=∞

0 xL

An electron in an infinite square well of width 

L = 0.5 nm is (at t=0) described by the following 

wave function: 

2 2
( , 0) sin sinx t A x x

L L L

π π    Ψ = = +    
    

We will only obtain results that correspond to the terms 

appearing in Ψ.  Therefore, only E1 and E2 are possible.

The probabilities depend on the 

coefficients, not on the various Ψ terms

themselves.  Because the coefficients

are simply numbers (    ), there is no 

time dependence.

2
A
L
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Tunneling Through a Barrier

This is nearly the same result as in the

“leaky particle” example!   Except for G:

We will often ignore G.

(We’ll tell you when to do this.)

The important result is e-2KL.

0 L

U0

x

U(x)

E

In many situations, the barrier width L 

is much larger than the ‘decay length’ 1/K of 

the penetrating wave (KL >> 1).  In this case 

B1 ≈ 0 (why?), and the result resembles the 
infinite barrier.  The tunneling coefficient simplifies:

( )02

2m
K U E= −

ℏ
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Why household electrical wire is not aluminum:

Aluminum is cheap and a good conductor.  However, 

aluminum tends to form an oxide surface layer (Al2O3) 

which can be as much as several nanometers thick. 

This layer could cause a problem in making electrical 

contacts, since it presents a barrier roughly 10 eV high

to the flow of electrons in and out of the Al.

Your requirement is that your transmission coefficient across any contact 

must be T > 10-10, or else the resistance will be too high for the high currents 

you’re using, causing a fire risk.  Should you use aluminum wiring or not?

(You can neglect G here.)

0 L

U0

E

Al wire
Other

conductor

Al2O3

Example: Aluminum wire 
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Why household electrical wire is not aluminum:

Aluminum is cheap and a good conductor.  However, 

aluminum tends to form an oxide surface layer (Al2O3) 

which can be as much as several nanometers thick. 

This layer could cause a problem in making electrical 

contacts, since it presents a barrier roughly 10 eV high

to the flow of electrons in and out of the Al.

Your requirement is that your transmission coefficient across any contact 

must be T > 10-10, or else the resistance will be too high for the high currents 

you’re using, causing a fire risk.  Should you use aluminum wiring or not?

(You can neglect G here.)

0 L

U0

E

Al wire
Other

conductor

Al2O3

1

2

10eV
2 16nm

1.505eV-nm
K

−= ≈π

2 1010KL
T e

− −≈ =

( )-101
- ln 10 0.72 nm
2

L
K

≈ ≈ Oxide is thicker than this, so go with copper!

Al wiring in houses is illegal for this reason.

Compute the maximum L:

Solution 
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Consider a situation in which a particle (e.g., an electron or an atom) 

can be in either of two wells separated by a potential barrier.

Is the particle on the left or right?

Another Consequence of “Tunneling”

Both!  If the barrier is finite, the wave 

function extends into both wells

d

E1
Lowest energy state:

ψ is small but non-zero inside the barrier.

Here is the state with the next higher energy:

Why does this state have higher energy?

Note that the potential is symmetric about the middle 

of the barrier.  Therefore, the energy states must be 

either symmetric or antisymmetric.  Also, remember 

that there are n-1 nodes. 

d

E2
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Energy Splitting in a Double Well

d

E1

E2

Suppose the particle starts out in the left well.

What is the time dependence of the probability?

From the graphs of ψ, we can see that, initially, 
ψ = ψ1 + ψ2 (to get cancellation on the right).
As discussed last lecture, the particle oscillates 

between the wells with  an oscillation period, 

T = h/(E2 - E1).

Therefore, ∆E = E2–E1 depends on the tunneling rate.

A double well with a high or wide barrier will have a smaller ∆E 
than one with a low or narrow barrier.

Also, ∆E will become larger as the energy increases (i.e., as U0 - E decreases).
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Act 2

U0
E2

E1

You are trying to make a laser that emits violet light 

(λ = 400 nm), based on the transition an electron makes 
between the ground and first-excited state of a double 

quantum well as shown. Your first sample emitted at 

λ = 390 nm.

What could you modify to shift the wavelength to 400 nm?

a. decrease the height of the barrier

b. increase the height of the barrier

c. decrease the width of the barrier
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You are trying to make a laser that emits violet light 

(λ = 400 nm), based on the transition an electron makes 
between the ground and first-excited state of a double 

quantum well as shown. Your first sample emitted at 

λ = 390 nm.

What could you modify to shift the wavelength to 400 nm?

a. decrease the height of the barrier

b. increase the height of the barrier

c. decrease the width of the barrier

Solution

U0
E2

E1

The frequency of the electron oscillating between the left and right well 

was too high � the probability to “tunnel” was too high!  You can reduce 

this by increasing the barrier height. 

The wavelength of the emitted photon was too low � the frequency 

of the photon was too high � the energy splitting between the 

ground and first-excited state was too large.  Raising the barrier 

makes the difference in energy E2-E1 smaller.  Why?



As we raise the height of the central barrier, the coupling between 

the two wells decreases. In the limit of an infinite barrier, it looks 

like two independent wells � same wavefunction curvature for both 

the symmetric (ground state) and anti-symmetric (1st excited state) 

wavefunctions� same kinetic energy, i.e., degenerate solutions.

Solution Solution -- MoreMore

ψψψψ0

ψψψψ1

ψψψψ0

ψψψψ1
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Consider the double well shown.  The two energy

levels of interest are E1 = 1.123 eV and E2 = 1.124 eV.

At t = 0, Ψ is in a superposition that maximizes its 

probability on the left side.

1) At what time will the probability be maximum on the 

right side?

2) If the barrier is made wider, will the time become larger or smaller?  

What about E2 - E1? 

Double Well Oscillation 

E1

E2
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Solution

The period of oscillation is:

T = h/(E2-E1) = 4.135×10-15 eV.s / 0.001 eV = 4.1×10-12 s.
We want a half period: T/2 = 2.1×10-12 s = 2.1 ps.

Consider the double well shown.  The two energy

levels of interest are E1 = 1.123 eV and E2 = 1.124 eV.

At t = 0, Ψ is in a superposition that maximizes its 

probability on the left side.

1) At what time will the probability be maximum on the 

right side?

2) If the barrier is made wider, will the time become larger or smaller?  

What about E2-E1? 

E1

E2
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Solution

A wider barrier will have a smaller tunneling rate, so T/2 will increase.

This implies that E2-E1 becomes smaller.

We’ll see (week 7) that this effect is important in chemical bonding.

The period of oscillation is:

T = h/(E2-E1) = 4.135×10-15 eV.s / 0.001 eV = 4.1×10-12 s.
We want a half period: T/2 = 2.1×10-12 s = 2.1 ps.

Consider the double well shown.  The two energy

levels of interest are E1 = 1.123 eV and E2 = 1.124 eV.

At t = 0, Ψ is in a superposition that maximizes its 

probability on the left side.

1) At what time will the probability be maximum on the 

right side?

2) If the barrier is made wider, will the time become larger or smaller?  

What about E2-E1? 

E1

E2
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Example: The Ammonia Molecule
This example will bring together several things you’ve learned so far.  
Consider the ammonia (NH3) molecule:

The N atom in the ammonia molecule (NH3) can has two equilibrium 

positions: above or below the plane of the H atoms, as shown.  If we 

graph the potential as the N atom moves along the line joining these 

positions, we get:

The nitrogen atom can tunnel between these two equivalent positions.

NH3 Model

U(x)

x

H

N Plane of hydrogen 

atoms.
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Difference

Sum

ψ (x)

Example: The Ammonia Molecule (2)

These are not square wells, but the idea is the same.  The lowest 

energy state is the symmetric superposition of the two single-well wave 

functions.

The anti-symmetric state has slightly higher energy: ∆E = 1.8×10-4 eV.

U(x)

0 x

E1

E2

Edge view of 

the hydrogen plane
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Given the energy difference between the 

ground and first excited states, 

E2 - E1 = 1.8x10
-4 eV, estimate how long 

it takes for the N atom to “tunnel” from 

one side of the NH3 molecule to the 

other?

Example: The Ammonia Molecule (3)

U(x)

0 x

E1

E2
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Given the energy difference between the 

ground and first excited states, 

E2 - E1 = 1.8x10
-4 eV, estimate how long 

it takes for the N atom to “tunnel” from 

one side of the NH3 molecule to the 

other?

( ) ( )
15

11

4
2 1

4.136 10 sec
1.1 10 sec

2 2 2 1.8 10
o

T h eV
t

E E eV

−
−

−

× ⋅
= = = = ×

− ×

This takes a half the oscillation period, T = h/(E2-E1): 

Example: The Ammonia Molecule (3)

U(x)

0 x

E1

E2
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Stimulated emission of radiation between 

these two lowest energy states of ammonia 

(∆E = 1.8x10-4 eV) was used to create the 
ammonia maser, by C. Townes in 1954 

(for which he won the Nobel prize in 1964).  

What wavelength of radiation does the maser 

emit?

The Ammonia Maser

U(x)

0 x

E1

E2

The maser was the precursor to the laser.  The physics is the same (more later).
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Stimulated emission of radiation between 

these two lowest energy states of ammonia 

(∆E = 1.8x10-4 eV) was used to create the 
ammonia maser, by C. Townes in 1954 

(for which he won the Nobel prize in 1964).  

What wavelength of radiation does the maser 

emit?

The Ammonia Maser

Solution:

By energy conservation, E2-E1 = Ephoton = hc/λ
λ = hc/(E2-E1) = 1240 eV.nm/1.8x10-4 eV = 6.88×106 nm

= 6.88 mm 

U(x)

0 x

E1

E2

microwaves

The maser was the precursor to the laser.  The physics is the same (more later).


