"It was almost as incredible as if you fired a 15 -inch shell at a piece of tissue paper, and it came back to hit you!"
--E. Rutherford
(on the 'discovery' of the nucleus)

Lecture 16:

3D Potentials and the Hydrogen Atom

$$
\psi(x, y, z)=\varphi(x) \varphi(y) \varphi(z)
$$

$$
\psi(r)=\sqrt{\frac{1}{\pi u_{o}^{3}}} e^{-r / a_{s}}
$$

Overview of the Course

Up to now:

- General properties and equations of quantum mechanics
- Time-independent Schrodinger's Equation (SEQ) and eigenstates.
- Time-dependent SEQ, superposition of eigenstates, time dependence.
- Collapse of the wave function
- Tunneling

This week:

- 3 dimensions, H atom
- Angular momentum, electron spin

Next week:

- Exclusion principle, periodic table of atoms, molecules
- Solids, Metals, insulators, semiconductors
- Consequences of Q. M., Schrodinger's cat, superconductors, lasers, . .

Final Exam: Monday, Oct. 14 Homework 6: Due Saturday (Oct. 12), 8 am

Today

3-Dimensional Potential Well:

- Product Wave Functions
- Degeneracy

Schrödinger's Equation for the Hydrogen Atom:

- Semi-quantitative picture from uncertainty principle
- Ground state solution
- Spherically-symmetric excited states ("s-states")

Quantum Particles in 3D Potentials

So far, we have considered quantum particles bound in one-dimensional potentials. This situation can be applicable to certain physical systems but it lacks some of the features of most real 3D quantum systems, such as atoms and artificial structures.

One consequence of confining a quantum particle in two or three dimensions is "degeneracy" -- the existence of several quantum states at the same energy.

To illustrate this important point in a simple system, let's extend our favorite potential - the infinite square well - to three dimensions.

Particle in a 3D Box (1)

The extension of the Schrödinger Equation (SEQ) to 3D is straightforward in Cartesian (x, y, z) coordinates:

$$
-\frac{\hbar^{2}}{2 m}\left(\frac{\partial^{2} \psi}{\partial x^{2}}+\frac{\partial^{2} \psi}{\partial y^{2}}+\frac{\partial^{2} \psi}{\partial z^{2}}\right)+U(x, y, z) \psi=E \psi \quad \text { where } \quad \psi \equiv \psi(x, y, z)
$$

Kinetic energy term: $\frac{1}{2 m}\left(p_{x}^{2}+p_{y}^{2}+p_{z}^{2}\right)$

Let's solve this SEQ for the particle in a 3D cubical box:

$$
U(x, y, z)= \begin{cases}\infty & \text { outside box, } \\ 0 \text { or } y \text { or } z<0 \\ 0 & \text { inside box } \\ \infty & \text { outside box, } \\ x \text { or } y \text { or } z>L\end{cases}
$$

This $U(x, y, z)$ can be "separated":
$U(x, y, z)=U(x)+U(y)+U(z)$
$\mathrm{U}=\infty$ if any of the three terms $=\infty$.

Particle in a 3D Box (2)

Whenever $\mathrm{U}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ can be written as the sum of functions of the individual coordinates, we can write some wave functions as products of functions of the individual coordinates:
(see the supplementary slides)

$$
\psi(x, y, z)=f(x) g(y) h(z)
$$

For the 3D square well, each function is simply the solution to the 1D square well problem:
$f_{n_{x}}(x)=N \sin \left(\frac{n_{x} \pi}{L} x\right) \quad E_{n x}=\frac{h^{2}}{2 m} \cdot\left(\frac{n_{x}}{2 L}\right)^{2}$
Similarly for y and z.
Each function contributes to the energy.
The total energy is the sum:

$$
\text { Etotal }=E_{x}+E_{y}+E_{z}
$$

2D wave functions:

$$
\sin \left(\frac{n_{x} \pi}{L} x\right) \sin \left(\frac{n_{y} \pi}{L} y\right)
$$

Particle in a 3D Box (3)

The energy eigenstates and energy values in a 3D cubical box are:

$$
\begin{aligned}
& \psi=N \sin \left(\frac{n_{x} \pi}{L} x\right) \sin \left(\frac{n_{y} \pi}{L} y\right) \sin \left(\frac{n_{z} \pi}{L} z\right) \\
& E_{n_{x} n_{y} n_{z}}=\frac{h^{2}}{8 m L^{2}}\left(n_{x}^{2}+n_{y}^{2}+n_{z}^{2}\right)
\end{aligned}
$$

where n_{x}, n_{y}, and n_{z} can each have values $1,2,3, \ldots$

This problem illustrates two important points:

- Three quantum numbers $\left(\mathrm{n}_{\mathrm{x}}, \mathrm{n}_{\mathrm{y}}, \mathrm{n}_{\mathrm{z}}\right)$ are needed to identify the state of this three-dimensional system.
That is true for every 3D system.
- More than one state can have the same energy: "Degeneracy". Degeneracy reflects an underlying symmetry in the problem. 3 equivalent directions, because it's a cube, not a rectangle.

Cubical Box Exercise

Consider a 3D cubic box:

Show energies and label ($\mathrm{n}_{\mathrm{x}}, \mathrm{n}_{\mathrm{y}}, \mathrm{n}_{\mathrm{z}}$) for the first 11 states of the particle in the 3D box, and write the degeneracy, D , for each allowed energy. Define $E_{0}=h^{2} / 8 \mathrm{~mL}^{2}$.

Solution

Consider a 3D cubic box:

Show energies and label ($\mathrm{n}_{\mathrm{x}}, \mathrm{n}_{\mathrm{y}}, \mathrm{n}_{\mathrm{z}}$) for the first 11 states of the particle in the 3D box, and write the degeneracy, D , for each allowed energy. Define $E_{0}=h^{2} / 8 \mathrm{~mL}^{2}$.

E	$\left(\mathrm{n}_{\mathrm{x}}, \mathrm{n}_{\mathrm{y}} \mathrm{n}_{\mathrm{z}}\right)$	Degeneracy
$12 E_{0}$	$(2,2,2)$	$\mathrm{D}=1$
11E。	$(3,1,1)(1,3,1)(1,1,3)$	$\mathrm{D}=3$
$9 \mathrm{E}_{0}$	$(2,2,1)(2,1,2)(1,2,2)$	$D=3$
$6 \mathrm{E}_{0}$	$(2,1,1)(1,2,1)(1,1,2)$	$\mathrm{D}=3$
$3 E_{0}$	$(1,1,1)$	$\mathrm{D}=1$

$$
\begin{gathered}
E_{n_{x} n_{y} n_{z}}=\frac{h^{2}}{8 m L^{2}}\left(n_{x}^{2}+n_{y}^{2}+n_{z}^{2}\right) \\
n_{x}, n_{y}, n_{z}=1,2,3, \ldots
\end{gathered}
$$

Act 1

For a cubical box, we just saw that the $5^{\text {th }}$ energy level is at $12 \mathrm{E}_{0}$, with a degeneracy of 1 and quantum numbers $(2,2,2)$.

1. What is the energy of the next energy level?
a. $13 \mathrm{E}_{0}$
b. $14 \mathrm{E}_{0}$
c. $15 \mathrm{E}_{0}$
2. What is the degeneracy of this energy level?
a. 2
b. 4
c. 6

Solution

For a cubical box, we just saw that the $5^{\text {th }}$ energy level is at $12 \mathrm{E}_{0}$, with a degeneracy of 1 and quantum numbers $(2,2,2)$.

1. What is the energy of the next energy level?

$$
\begin{aligned}
\text { a. } 13 \mathrm{E}_{0} & \text { b. } 14 \mathrm{E}_{0} \quad \text { c. } 15 \mathrm{E}_{0} \\
& E_{1,2,3}=E_{0}\left(1^{2}+2^{2}+3^{2}\right)=14 E_{0}
\end{aligned}
$$

2. What is the degeneracy of this energy level?
a. 2
b. 4
c. 6

Solution

For a cubical box, we just saw that the $5^{\text {th }}$ energy level is at $12 \mathrm{E}_{0}$, with a degeneracy of 1 and quantum numbers $(2,2,2)$.

1. What is the energy of the next energy level?

$$
\begin{aligned}
& \text { a. } 13 E_{0} \quad \text { b. } 14 E_{0} \quad \text { c. } 15 E_{0} \\
& E_{1,2,3}=E_{0}\left(1^{2}+2^{2}+3^{2}\right)=14 E_{0}
\end{aligned}
$$

2. What is the degeneracy of this energy level?
a. 2
b. 4
c. 6

Any ordering of the three numbers will give the same energy.
Because they are all different (distinguishable), the answer is $3!=6$.

Question:
Is it possible to have $\mathrm{D}>6$?
Hint: Consider $E=62 E_{0}$.

Non-cubic Box

Consider a non-cubic box:

The box is stretched along the y-direction. What will happen to the energy levels?
Define $E_{0}=h^{2} / 8 \mathrm{~mL}_{1}{ }^{2}$

Solution

Consider a non-cubic box:

The box is stretched along the y-direction. What will happen to the energy levels?
Define $E_{0}=h^{2} / 8 \mathrm{~mL}_{1}{ }^{2}$

1: The symmetry is "broken" for y , so the 3-fold degeneracy is lowered. A 2-fold degeneracy remains, because x and z are still symmetric.

2: There is an overall lowering of energies due to decreased confinement along y.

Act 2

Consider a particle in a 2D well, with $L_{x}=L_{y}=L$.

1. Compare the energies of the $(2,2),(1,3)$, and $(3,1)$ states?
a. $E_{(2,2)}>E_{(1,3)}=E_{(3,1)}$
b. $E_{(2,2)}=E_{(1,3)}=E_{(3,1)}$
c. $E_{(2,2)}<E_{(1,3)}=E_{(3,1)}$
2. If we squeeze the box in the x-direction (i.e., $L_{x}<L_{y}$) compare $\mathrm{E}_{(1,3)}$ with $\mathrm{E}_{(3,1)}$.
a. $E_{(1,3)}<E_{(3,1)}$
b. $E_{(1,3)}=E_{(3,1)}$
c. $E_{(1,3)}>E_{(3,1)}$

Solution

Consider a particle in a 2 D well, with $\mathrm{L}_{x}=\mathrm{L}_{y}=\mathrm{L}$.

1. Compare the energies of the $(2,2),(1,3)$, and $(3,1)$ states?
a. $E_{(2,2)}>E_{(1,3)}=E_{(3,1)}$

$$
\begin{aligned}
\mathrm{E}_{(1,3)}=\mathrm{E}_{(3,1)}= & \mathrm{E}_{0}\left(1^{2}+3^{2}\right)=10 \mathrm{E}_{0} \\
= & \mathrm{E}_{0}\left(2^{2}+2^{2}\right)=8 \mathrm{E}_{0} \\
& E_{0}=\frac{h^{2}}{8 m L^{2}}
\end{aligned}
$$

2. If we squeeze the box in the x-direction (i.e., $L_{x}<L_{y}$) compare $\mathrm{E}_{(1,3)}$ with $\mathrm{E}_{(3,1)}$.
a. $E_{(1,3)}<E_{(3,1)}$
b. $E_{(1,3)}=E_{(3,1)}$
c. $E_{(1,3)}>E_{(3,1)}$

Solution

Consider a particle in a 2 D well, with $\mathrm{L}_{x}=L_{y}=L$.

1. Compare the energies of the $(2,2),(1,3)$, and $(3,1)$ states?
a. $E_{(2,2)}>E_{(1,3)}=E_{(3,1)}$

$$
\begin{aligned}
\mathrm{E}_{(1,3)}=\mathrm{E}_{(3,1)}= & \mathrm{E}_{0}\left(1^{2}+3^{2}\right)=10 \mathrm{E}_{0} \\
= & \mathrm{E}_{0}\left(2^{2}+2^{2}\right)=8 \mathrm{E}_{0} \\
& E_{0}=\frac{h^{2}}{8 m L^{2}}
\end{aligned}
$$

2. If we squeeze the box in the x-direction (i.e., $L_{x}<L_{y}$) compare $\mathrm{E}_{(1,3)}$ with $\mathrm{E}_{(3,1)}$.
a. $E_{(1,3)}<E_{(3,1)}$
b. $E_{(1,3)}=E_{(3,1)}$
c. $E_{(1,3)}>E_{(3,1)}$

Example: $L_{x}=1 / 2, L_{y}=1$:

Because $L_{x}<L_{y}$, for a given n, E_{0} for x motion is larger than E_{0} for y motion. The effect is larger for larger n. Therefore, $\mathrm{E}_{(3,1)}>\mathrm{E}_{(1,3)}$.

$$
\begin{aligned}
& E_{(1,3)} \propto 4 \times 1^{2}+1 \times 3^{2}=13 \\
& E_{(3,1)} \propto 4 \times 3^{2}+1 \times 1^{2}=37
\end{aligned}
$$

Another 3D System: The Atom -electrons confined in Coulomb field of a nucleus

Early hints of the quantum nature of atoms:
Discrete Emission and Absorption spectra

- When excited in an electrical discharge, atoms emit radiation only at discrete wavelengths
- Different emission spectra for different atoms

Atomic hydrogen

Geiger-Marsden (Rutherford) Experiment (1911):

- Measured angular dependence of a particles (He ions) scattered from gold foil.
- Mostly scattering at small angles \rightarrow supported the "plum pudding" model. But...

- Occasional scatterings at large angles \rightarrow Something massive in there!
- Conclusion: Most of atomic mass is concentrated in a small region of the atom

Rutherford Experiment

Atoms: Classical Planetary Model

(An early model of the atom)

- Classical picture: negatively charged objects (electrons) orbit positively charged nucleus due to Coulomb force.
- There is a BIG PROBLEM with this:
- As the electron moves in its circular orbit, it is ACCELERATING.
- As you learned in Physics 212, accelerating charges radiate electromagnetic energy.
- Consequently, an electron would continuously lose energy and spiral into the nucleus in about
 10^{-9} sec.

The planetary model doesn't lead to stable atoms.

Hydrogen Atom - Qualitative

Why doesn't the electron collapse into the nucleus, where its potential energy is lowest?

We must balance two effects:

- As the electron moves closer to the nucleus, its potential energy decreases (more negative):

$$
U=-\frac{\kappa e^{2}}{r}
$$

- However, as it becomes more and more confined, its kinetic energy increases:

$$
p \approx \frac{\hbar}{r} \Rightarrow K E \approx \frac{\hbar^{2}}{2 m r^{2}}
$$

Therefore, the total energy is: $\longrightarrow E=K E+P E \approx \frac{\hbar^{2}}{2 m r^{2}}-\frac{\kappa e^{2}}{r}$
E has a minimum at:

At this radius,

$$
\begin{aligned}
& r \approx \frac{\hbar^{2}}{m \kappa e^{2}}=a_{0}=0.053 \mathrm{~nm} \\
& E \approx \begin{array}{l}
\text { The "Bohr radius" } \\
\text { of the } H \text { atom. }
\end{array} \\
& E \approx \frac{m \kappa^{2} e^{4}}{2 \hbar^{2}}=-13.6 \mathrm{eV} \text { lie ground state energy } \\
& \text { of the hydrogen atom. }
\end{aligned}
$$

Act 3

Consider an electron around a nucleus that has two protons, like an ionized Helium atom.

1. Compare the "effective Bohr radius" $a_{0, \mathrm{He}}$ with the usual Bohr radius for hydrogen, a_{0} :
a. $a_{0, \mathrm{He}}>a_{0}$
b. $a_{0, \mathrm{He}}=a_{0}$

$$
r \approx \frac{\hbar^{2}}{m_{\kappa} e^{2}}=a_{0}=0.053 \mathrm{~nm}
$$

c. $a_{0, H e}<a_{0}$
2. What is the ratio of ground state energies $\mathrm{E}_{0, \mathrm{He}} / \mathrm{E}_{0, \mathrm{H}}$?
a. $E_{0, H e} / E_{0, H}=1$
b. $E_{0, H e} / E_{0, H}=2$
c. $\mathrm{E}_{0, H e} / \mathrm{E}_{0, H}=4$

Solution

Consider an electron around a nucleus that has two protons, like an ionized Helium atom.

1. Compare the "effective Bohr radius" $a_{0, H e}$ with the usual Bohr radius for hydrogen, $a_{\text {Dóok }}$ at how a_{0} depends on the charge:
a. $a_{0, \mathrm{He}}>a_{0}$
b. $a_{0, H e}=a_{0}$
c. $a_{0, H e}<a_{0}$

$$
a_{0} \equiv \frac{\hbar^{2}}{m \kappa e^{2}} \Rightarrow a_{0, H e} \equiv \frac{\hbar^{2}}{m \kappa(2 e) e}=\frac{a_{0}}{2}
$$

This should make sense:
more charge \rightarrow stronger attraction
\rightarrow electron sits closer to the nucleus
2. What is the ratio of ground state energies $E_{0, H e} / E_{0, H}$?
a. $E_{0, H e} / E_{0, H}=1$
b. $E_{0, H e} / E_{0, H}=2$
c. $E_{0, H e} / E_{0, H}=4$

Solution

Consider an electron around a nucleus that has two protons, (an ionized Helium atom).

1. Compare the "effective Bohr radius" $a_{0, H e}$ with the usual Bohr radius for hydrogen, $a_{\text {Doiok }}$ at how a_{0} depends on the charge:
a. $a_{0, \mathrm{He}}>a_{0}$
b. $a_{0, H e}=a_{0}$

$$
a_{0} \equiv \frac{\hbar^{2}}{m \kappa e^{2}} \Rightarrow a_{0, H e} \equiv \frac{\hbar^{2}}{m \kappa(2 e) e}=\frac{a_{0}}{2}
$$

c. $a_{0, \mathrm{He}}<a_{0}$

This should make sense: more charge \rightarrow stronger attraction \rightarrow electron "sits" closer to the nucleus
2. What is the ratio of ground state energies $E_{0, H e} / E_{0, H}$?
a. $E_{0, H e} / E_{0, H}=1$
b. $E_{0, H e} / E_{0, H}=2$
c. $E_{0, H e} / E_{0, H}=4$

Clearly the electron will be more tightly bound, so $\left|\mathrm{E}_{0, \mathrm{He}}\right|>\left|\mathrm{E}_{0, \mathrm{H}}\right|$. How much more tightly? Look at E_{0} :

$$
E_{0, H}=-\frac{m \kappa^{2} e^{4}}{2 \hbar^{2}} \Rightarrow E_{0, H e}=\frac{-m \kappa^{2}(2 e)^{2} e^{2}}{2 \hbar^{2}}=4 E_{0, H}
$$

In general, for a "hydrogenic" atom (only one electron) with Z protons:

$$
E_{0, Z}=Z^{2} E_{0, H}
$$

Next Lectures

Angular momentum \rightarrow atomic orbitals
"Spin" \rightarrow Pauli Exclusion Principle

Supplement: Separation of Variables (1)

In the 3D box, the SEQ is:

$$
-\frac{\hbar^{2}}{2 m}\left(\frac{\partial^{2} \psi}{\partial x^{2}}+\frac{\partial^{2} \psi}{\partial y^{2}}+\frac{\partial^{2} \psi}{\partial z^{2}}\right)+(U(x)+U(y)+U(z)) \psi=E \psi
$$

NOTE:
Partial derivatives.

Let's see if separation of variables works.
Substitute this expression for ψ into the SEQ:

$$
\begin{gathered}
\psi(x, y, z)=f(x) g(y) h(z) \\
-\frac{\hbar^{2}}{2 m}\left(g h \frac{d^{2} f}{d x^{2}}+f h \frac{d^{2} g}{d y^{2}}+f g \frac{d^{2} h}{d z^{2}}\right)+(U(x)+U(y)+U(z)) f g h=\text { Efgh } \quad \begin{array}{l}
\text { NotE: derivatives. }
\end{array}
\end{gathered}
$$

Divide by fgh:

$$
-\frac{\hbar^{2}}{2 m}\left(\frac{1}{f} \frac{d^{2} f}{\partial x^{2}}+\frac{1}{g} \frac{d^{2} g}{d y^{2}}+\frac{1}{h} \frac{d^{2} h}{d z^{2}}\right)+(U(x)+U(y)+U(z))=E
$$

Supplement: Separation of Variables (2)

Regroup:

$$
\left[-\frac{\hbar^{2}}{2 m} \frac{1}{f} \frac{d^{2} f}{\partial x^{2}}+U(x)\right]+\left[-\frac{\hbar^{2}}{2 m} \frac{1}{g} \frac{d^{2} g}{d y^{2}}+U(y)\right]+\left[-\frac{\hbar^{2}}{2 m} \frac{1}{h} \frac{d^{2} h}{d z^{2}}+U(z)\right]=E
$$

A function of $x \quad$ A function of $y \quad$ A function of z
We have three functions, each depending on a different variable, that must sum to a constant.
Therefore, each function must be a constant:

$$
\begin{gathered}
-\frac{\hbar^{2}}{2 m} \frac{1}{f} \frac{d^{2} f}{\partial x^{2}}+U(x)=E_{x} \\
-\frac{\hbar^{2}}{2 m} \frac{1}{g} \frac{d^{2} g}{d y^{2}}+U(y)=E_{y} \\
-\frac{\hbar^{2}}{2 m} \frac{1}{h} \frac{d^{2} h}{d z^{2}}+U(z)=E_{z} \\
E_{x}+E_{y}+E_{z}=E
\end{gathered}
$$

Each function, $f(x), g(y)$, and $h(z)$ satisfies its own 1D SEQ.

