"It was almost as incredible as if you fired a 15-inch shell at a piece of tissue paper, and it came back to hit you!"

--E. Rutherford

(on the 'discovery' of the nucleus)

Lecture 16: 3D Potentials and the Hydrogen Atom

 $\psi(x, y, z) = \varphi(x)\varphi(y)\varphi(z)$

$$\psi(r) = \sqrt{\frac{1}{\pi a_o^3}} e^{-r/a_o}$$

Overview of the Course

Up to now:

- General properties and equations of quantum mechanics
- Time-independent Schrodinger's Equation (SEQ) and eigenstates.
- Time-dependent SEQ, superposition of eigenstates, time dependence.
- Collapse of the wave function
- Tunneling

This week:

- 3 dimensions, H atom
- Angular momentum, electron spin

Next week:

- Exclusion principle, periodic table of atoms, molecules
- Solids, Metals, insulators, semiconductors
- Consequences of Q. M., Schrodinger's cat, superconductors, lasers, . .

Final Exam: Monday, Oct. 14 Homework 6: Due Saturday (Oct. 12), 8 am

3-Dimensional Potential Well:

- Product Wave Functions
- Degeneracy

Schrödinger's Equation for the Hydrogen Atom:

- Semi-quantitative picture from uncertainty principle
- Ground state solution
- Spherically-symmetric excited states ("s-states")

Quantum Particles in 3D Potentials

So far, we have considered quantum particles bound in one-dimensional potentials. This situation can be applicable to certain physical systems but it lacks some of the features of most real 3D quantum systems, such as atoms and artificial structures.

A real (2D) "quantum dot"

http://pages.unibas.ch/phys-meso/Pictures/pictures.html

One consequence of confining a quantum particle in two or three dimensions is "degeneracy" -- the existence of several quantum states at the same energy.

To illustrate this important point in a simple system, let's extend our favorite potential - the infinite square well - to three dimensions.

Particle in a 3D Box (1)

The extension of the Schrödinger Equation (SEQ) to 3D is straightforward in Cartesian (x,y,z) coordinates:

$$-\frac{\hbar^2}{2m}\left(\frac{\partial^2\psi}{\partial x^2}+\frac{\partial^2\psi}{\partial y^2}+\frac{\partial^2\psi}{\partial z^2}\right)+U(x,y,z)\psi=E\psi$$

where $\psi \equiv \psi(x, y, z)$

Kinetic energy term: $\frac{1}{2m} \left(p_x^2 + p_y^2 + p_z^2 \right)$

Let's solve this SEQ for the particle in a 3D cubical box:

$$U(x,y,z) = \begin{cases} \infty & \text{outside box, } x \text{ or y or } z < 0 \\ 0 & \text{inside box} \\ \infty & \text{outside box, } x \text{ or y or } z > L \end{cases}$$

This U(x,y,z) can be "separated": U(x,y,z) = U(x) + U(y) + U(z)

 $U = \infty$ if any of the three terms = ∞ .

Particle in a 3D Box (2)

Whenever U(x,y,z) can be written as the sum of functions of the individual coordinates, we can write some wave functions as products of functions of the individual coordinates: (see the supplementary slides)

 $\psi(x,y,z) = f(x)g(y)h(z)$

For the 3D square well, each function is simply the solution to the 1D square well problem:

$$f_{n_x}(x) = N \sin\left(\frac{n_x \pi}{L}x\right) \quad E_{nx} = \frac{h^2}{2m} \cdot \left(\frac{n_x}{2L}\right)^2$$

Similarly for y and z.

Each function contributes to the energy. The total energy is the sum:

Etotal = $E_x + E_y + E_z$

Particle in a 3D Box (3)

The energy eigenstates and energy values in a 3D cubical box are:

$$\psi = N \sin\left(\frac{n_x \pi}{L} x\right) \sin\left(\frac{n_y \pi}{L} y\right) \sin\left(\frac{n_z \pi}{L} z\right)$$
$$\mathcal{E}_{n_x n_y n_z} = \frac{h^2}{8mL^2} \left(n_x^2 + n_y^2 + n_z^2\right)$$

where n_x, n_y , and n_z can each have values 1,2,3,....

This problem illustrates two important points:

- Three quantum numbers (n_x,n_y,n_z) are needed to identify the state of this three-dimensional system.
 That is true for every 3D system.
- More than one state can have the same energy: "Degeneracy".
 Degeneracy reflects an underlying symmetry in the problem.
 3 equivalent directions, because it's a cube, not a rectangle.

Cubical Box Exercise

Consider a 3D cubic box:

Show energies and label (n_x, n_y, n_z) for the first 11 states of the particle in the 3D box, and write the degeneracy, D, for each allowed energy. Define $E_o = h^2/8mL^2$.

Consider a 3D cubic box:

Show energies and label (n_x, n_y, n_z) for the first 11 states of the particle in the 3D box, and write the degeneracy, D, for each allowed energy. Define $E_o = h^2/8mL^2$.

↑Ζ

Act 1

For a cubical box, we just saw that the 5th energy level is at 12 E_0 , with a degeneracy of 1 and quantum numbers (2,2,2).

1. What is the energy of the next energy level?

a. 13E₀ b. 14E₀ c. 15E₀

2. What is the degeneracy of this energy level?
a. 2 b. 4 c. 6

For a cubical box, we just saw that the 5th energy level is at 12 E_0 , with a degeneracy of 1 and quantum numbers (2,2,2).

1. What is the energy of the next energy level? a. $13E_0$ b. $14E_0$ c. $15E_0$ $E_{1,2,3} = E_0 (1^2 + 2^2 + 3^2) = 14 E_0$

2. What is the degeneracy of this energy level?

a. 2 b. 4 c. 6

For a cubical box, we just saw that the 5th energy level is at 12 E_0 , with a degeneracy of 1 and quantum numbers (2,2,2).

1. What is the energy of the next energy level?

a. 13E₀ b. 14E₀ c. 15E₀

 $E_{1,2,3} = E_0 (1^2 + 2^2 + 3^2) = 14 E_0$

2. What is the degeneracy of this energy level?

a. 2 b. 4 c. 6

Any ordering of the three numbers will give the same energy. Because they are all different (distinguishable), the answer is 3! = 6.

> Question: Is it possible to have D > 6? Hint: Consider $E = 62E_0$.

Non-cubic Box

Consider a non-cubic box:

The box is stretched along the y-direction. What will happen to the energy levels? Define $E_0 = h^2/8mL_1^2$

Consider a non-cubic box:

The box is stretched along the y-direction. What will happen to the energy levels? Define $E_0 = h^2/8mL_1^2$

- The symmetry is "broken" for y, so the 3-fold degeneracy is lowered. A 2-fold degeneracy remains, because x and z are still symmetric.
- 2: There is an overall lowering of energies due to decreased confinement along y.

Act 2

Consider a particle in a 2D well, with $L_x = L_y = L$.

1. Compare the energies of the (2,2), (1,3), and (3,1) states?

a.
$$E_{(2,2)} > E_{(1,3)} = E_{(3,1)}$$

c. $E_{(2,2)} < E_{(1,3)} = E_{(3,1)}$

- 2. If we squeeze the box in the x-direction (*i.e.*, $L_x < L_y$) compare $E_{(1,3)}$ with $E_{(3,1)}$.
 - a. $E_{(1,3)} < E_{(3,1)}$ b. $E_{(1,3)} = E_{(3,1)}$ c. $E_{(1,3)} > E_{(3,1)}$

Consider a particle in a 2D well, with $L_x = L_y = L$.

- 1. Compare the energies of the (2,2), (1,3), and (3,1) states?
 - a. $E_{(2,2)} > E_{(1,3)} = E_{(3,1)}$ b. $E_{(2,2)} = E_{(1,3)} = E_{(3,1)}$ c. $E_{(2,2)} < E_{(1,3)} = E_{(3,1)}$ $E_{(3,1)} = E_{(3,1)} = E_{(2,2)} = E_{($
- 2. If we squeeze the box in the x-direction (*i.e.*, $L_x < L_y$) compare $E_{(1,3)}$ with $E_{(3,1)}$.
 - a. $E_{(1,3)} < E_{(3,1)}$ b. $E_{(1,3)} = E_{(3,1)}$ c. $E_{(1,3)} > E_{(3,1)}$

Consider a particle in a 2D well, with $L_x = L_y = L$.

1. Compare the energies of the (2,2), (1,3), and (3,1) states?

a.
$$E_{(2,2)} > E_{(1,3)} = E_{(3,1)}$$

b. $E_{(2,2)} = E_{(1,3)} = E_{(3,1)}$
c. $E_{(2,2)} < E_{(1,3)} = E_{(3,1)}$
 $E_{(1,3)} = E_{(3,1)} = E_{0} (1^{2} + 3^{2}) = 10 E_{0}$
 $E_{(2,2)} = E_{0} (2^{2} + 2^{2}) = 8 E_{0}$
 $E_{(2,2)} = E_{0} (2^{2} + 2^{2}) = 8 E_{0}$
 $E_{0} = \frac{h^{2}}{8mL^{2}}$

- 2. If we squeeze the box in the x-direction (*i.e.*, $L_x < L_y$) compare $E_{(1,3)}$ with $E_{(3,1)}$.
 - a. $E_{(1,3)} < E_{(3,1)}$ b. $E_{(1,3)} = E_{(3,1)}$ c. $E_{(1,3)} > E_{(3,1)}$

Because $L_x < L_y$, for a given n, E_0 for x motion is larger than E_0 for y motion. The effect is larger for larger n. Therefore, $E_{(3,1)} > E_{(1,3)}$.

Example:
$$L_x$$
 = ½ , L_y = 1

We say "the degeneracy has been lifted."

Another 3D System: The Atom -electrons confined in Coulomb field of a nucleus

Early hints of the quantum nature of atoms:

Discrete Emission and Absorption spectra

- When excited in an electrical discharge, atoms emit radiation only at discrete wavelengths
- Different emission spectra for different atoms

Geiger-Marsden (Rutherford) Experiment (1911):

- Measured angular dependence of a particles (He ions) scattered from gold foil.
- Mostly scattering at small angles → supported the "plum pudding" model. But...
- Occasional scatterings at large angles \rightarrow Something massive in there!
 - Conclusion: Most of atomic mass is concentrated in a small region of the atom

Atomic hydrogen

a nucleus!

Rutherford Experiment

Atoms: Classical Planetary Model (An early model of the atom)

- Classical picture: negatively charged objects (electrons) orbit positively charged nucleus due to Coulomb force.
- There is a BIG PROBLEM with this:
 - As the electron moves in its circular orbit, it is ACCELERATING.
 - As you learned in Physics 212, accelerating charges radiate electromagnetic energy.
 - Consequently, an electron would continuously lose energy and spiral into the nucleus in about 10⁻⁹ sec.

The planetary model doesn't lead to stable atoms.

Hydrogen Atom - Qualitative

Why doesn't the electron collapse into the nucleus, where its potential energy is lowest?

We must balance two effects:

- As the electron moves closer to the nucleus, its potential energy decreases (more negative):
- However, as it becomes more and more confined, its kinetic energy increases:

```
Therefore, the total energy is:
```

 $p \approx \frac{\hbar}{r} \implies KE \approx \frac{\hbar^2}{2mr^2}$

 $U = -\frac{\kappa e^2}{2}$

$$E = KE + PE \approx \frac{\hbar^2}{2mr^2} - \frac{\kappa e^2}{r}$$

Lecture 16, p 22

E has a minimum at: $r \approx \frac{\hbar^2}{m\kappa e^2} \equiv a_0 \equiv 0.053 \text{ nm}$ The "Bohr radius"
of the H atom.At this radius, $E \approx -\frac{m\kappa^2 e^4}{2\hbar^2} \equiv -13.6 \text{ eV}$ The ground state energy
of the hydrogen atom.Heisenberg's uncertainty principle prevents the atom's collapse.One factor of e or e² comes
from the electron.

Act 3

Consider an electron around a nucleus that has two protons, like an ionized Helium atom.

- Compare the "effective Bohr radius" a_{0,He} with the usual Bohr radius for hydrogen, a₀:
 - **a.** $a_{0,He} > a_0$

$$r \approx \frac{\hbar^2}{m\kappa e^2} \equiv a_0 = 0.053 \text{ nm}$$

The "Bohr radius"
of the H atom.

- 2. What is the ratio of ground state energies $E_{0,He}/E_{0,H}$?
 - a. $E_{0,He}/E_{0,H} = 1$ b. $E_{0,He}/E_{0,H} = 2$
 - c. $E_{0,He}/E_{0,H} = 4$

Consider an electron around a nucleus that has two protons, like an ionized Helium atom.

- Compare the "effective Bohr radius" a_{0,He} with the usual Bohr radius for hydrogen, a₂: Bohr radius for hydrogen, a₂:
 - **a.** $a_{0,He} > a_{0}$ **b.** $a_{0,He} = a_{0}$ **c.** $a_{0,He} < a_{0}$ $a_{0} \equiv \frac{\hbar^{2}}{m\kappa e^{2}} \Rightarrow a_{0,He} \equiv \frac{\hbar^{2}}{m\kappa (2e)e} = \frac{a_{0}}{2}$ This should make sense: more charge \Rightarrow stronger attraction
 - → electron sits closer to the nucleus
- 2. What is the ratio of ground state energies $E_{0,He}/E_{0,H}$?
 - a. $E_{0,He}/E_{0,H} = 1$ b. $E_{0,He}/E_{0,H} = 2$ c. $E_{0,He}/E_{0,H} = 4$

Consider an electron around a nucleus that has two protons, (an ionized Helium atom).

- Compare the "effective Bohr radius" a_{0,He} with the usual Bohr radius for hydrogen, a₂;
 Bohr radius for hydrogen, a₂;
 - a. $a_{0,He} > a_0$ b. $a_{0,He} = a_0$ c. $a_{0,He} < a_0$

$$a_0 \equiv \frac{\hbar^2}{m\kappa e^2} \Longrightarrow a_{0,He} \equiv \frac{\hbar^2}{m\kappa(2e)e} = \frac{a_0}{2}$$

This should make sense:
more charge \rightarrow stronger attraction

→ electron "sits" closer to the nucleus

- 2. What is the ratio of ground state energies $E_{0,He}/E_{0,H}$?
 - a. $E_{0,He}/E_{0,H} = 1$ b. $E_{0,He}/E_{0,H} = 2$ c. $E_{0,He}/E_{0,H} = 4$

Clearly the electron will be more tightly bound, so $|E_{0,He}| > |E_{0,H}|$. How much more tightly? Look at E_0 :

$$E_{0,H} = -\frac{m\kappa^2 e^4}{2\hbar^2} \implies E_{0,He} = \frac{-m\kappa^2 (2e)^2 e^2}{2\hbar^2} = 4E_{0,He}$$

In general, for a "hydrogenic" atom (only one electron) with Z protons:

$$E_{0,Z} = Z^2 E_{0,H}$$

Lecture 16, p 25

Next Lectures

Angular momentum → atomic orbitals "Spin" → Pauli Exclusion Principle

Supplement: Separation of Variables (1)

In the 3D box, the SEQ is:

$$-\frac{\hbar^2}{2m}\left(\frac{\partial^2\psi}{\partial x^2}+\frac{\partial^2\psi}{\partial y^2}+\frac{\partial^2\psi}{\partial z^2}\right)+\left(U(x)+U(y)+U(z)\right)\psi=E\psi$$

NOTE: Partial derivatives.

Let's see if separation of variables works. Substitute this expression for ψ into the SEQ:

 $\psi(x,y,z) = f(x)g(y)h(z)$

$$-\frac{\hbar^2}{2m}\left(gh\frac{d^2f}{dx^2}+fh\frac{d^2g}{dy^2}+fg\frac{d^2h}{dz^2}\right)+\left(U(x)+U(y)+U(z)\right)fgh=Efgh$$

NOTE: Total derivatives.

Divide by fgh:

$$-\frac{\hbar^2}{2m}\left(\frac{1}{f}\frac{d^2f}{\partial x^2}+\frac{1}{g}\frac{d^2g}{dy^2}+\frac{1}{h}\frac{d^2h}{dz^2}\right)+\left(U(x)+U(y)+U(z)\right)=E$$

Supplement: Separation of Variables (2)

Regroup:

$$\left[-\frac{\hbar^2}{2m}\frac{1}{f}\frac{d^2f}{\partial x^2} + U(x)\right] + \left[-\frac{\hbar^2}{2m}\frac{1}{g}\frac{d^2g}{dy^2} + U(y)\right] + \left[-\frac{\hbar^2}{2m}\frac{1}{h}\frac{d^2h}{dz^2} + U(z)\right] = E$$

A function of x A function of y A function of z

We have three functions, each depending on a different variable, that must sum to a constant. Therefore, each function must be a constant:

$$-\frac{\hbar^2}{2m}\frac{1}{f}\frac{d^2f}{\partial x^2} + U(x) = E_x$$
$$-\frac{\hbar^2}{2m}\frac{1}{g}\frac{d^2g}{dy^2} + U(y) = E_y$$
$$-\frac{\hbar^2}{2m}\frac{1}{h}\frac{d^2h}{dz^2} + U(z) = E_z$$
$$E_x + E_y + E_z = E$$

Each function, f(x), g(y), and h(z) satisfies its own 1D SEQ.