1-Body Motion $\quad \vec{f}=\dot{\vec{p}}=m \ddot{\vec{r}} \quad \vec{p}=m \vec{v}=m \dot{\vec{r}}$
$\vec{l} \equiv \vec{r} \times \vec{p} \quad \vec{\tau} \equiv \vec{r} \times \vec{f}=\dot{\vec{l}} \quad \vec{f}_{\mathrm{EM}}=q(\vec{E}+\vec{v} \times \vec{B})$
$\vec{f}_{\text {air }}=-\left(b v+c v^{2}\right) \hat{v}=\vec{f}_{\text {lin }}+\vec{f}_{\text {quad }} \quad$ Reynolds $R \equiv D v \rho / \eta$ sphere, diameter D: $\quad b=\beta D \quad c=\gamma D^{2} \quad R=48 f_{\text {quad }} / f_{\text {lin }}$

Rocket Motion $\quad m \dot{v}=-\dot{m} v_{\text {ex }}+F^{\mathrm{EXT}}$
Miscellaneous $1 \mathrm{~m} / \mathrm{s} \approx 2 \mathrm{mph}$

$$
f_{\text {friction }}=\mu F_{N} \quad \vec{f}_{\text {grav }}=-\frac{G M m}{r^{2}} \hat{r}
$$

Collective Motion $\quad *$ assuming Newton's $3^{\text {rd }}$ Law $\rightarrow F^{\mathrm{INT}}$ cancel
Notation for collective properties

- unsubscripted capital letter \rightarrow "TOTAL", except for \ldots
- unsubscripted capital position, velocity, accel \rightarrow "OF THE CM"
\diamond subscript \neq coordinate index \rightarrow "OF"
\bullet no superscript \rightarrow "RELATIVE TO ORIGIN"
\bullet superscript () \rightarrow "RELATIVE TO (POINT)"
\bullet superscript prime' \rightarrow "RELATIVE TO THE CM"
CM: $\quad M \vec{R} \equiv \sum_{i} m_{i} \vec{r}_{i} \quad \vec{P}=M \dot{\vec{R}} \quad \vec{L}_{C M}=\vec{R} \times \vec{P}$
Rotating Body: for any BODY-FIXED vector $\vec{B}, \dot{\vec{B}}=\vec{\omega} \times \vec{B}$
Moment of Inertia: for any BODY-FIXED point B,

$$
I_{\hat{\omega}}^{(B)} \equiv \sum m_{i}\left|\vec{r}_{i}^{(B)} \times \hat{\boldsymbol{\omega}}\right|^{2} \quad L_{\omega}^{(B)}=I_{\hat{\omega}}^{(B)} \omega \quad T^{(B)}=\frac{1}{2} I_{\hat{\omega}}^{(B)} \omega^{2}
$$

EOM in Inertial Frames
$\vec{F}^{\mathrm{EXT}}=\dot{\vec{P}}$
$\vec{\tau}^{\mathrm{EXT},(A)}=\dot{\vec{L}}^{(A)}$ if reference point A

- is the CM, or
- is not accelerating, or
- $\ddot{\vec{r}}_{A} \|\left(\vec{R}-\vec{r}_{A}\right)$
$T+U^{\mathrm{EXT}}+U^{\mathrm{INT}}=$ conserved for
conservative forces

Decompositions

$\vec{P}=\vec{P}_{C M} \quad I_{\hat{\omega}}^{(B)}=I_{\mathrm{CM}, \hat{\omega}}^{(B)}+I_{\hat{\omega}}^{\prime}$
$\vec{L}=\vec{L}_{\mathrm{CM}}+\vec{L}^{\prime} \quad \vec{\tau}_{C M}^{\mathrm{EXT}}=\dot{\vec{L}}_{C M}$
$T=T_{\mathrm{CM}}+T^{\prime} \quad T=T^{\text {(stationary point) }}$

Uniform Gravity: If $\vec{f}^{\mathrm{EXT}}=m \vec{g}$ only $\rightarrow \quad \vec{F}^{\mathrm{EXT}}=M \vec{g} \quad \vec{\tau}^{\mathrm{EXT}}=\vec{R} \times M \vec{g} \quad \vec{\tau}^{\mathrm{EXT}}=0 \quad U^{\mathrm{EXT}}=M g H$

