6 Basic Pieces : math that tends to get lost somewhere

Piece \#0: Vector Magnitudes \& Dot Products
(0) $|\vec{v}|=\sqrt{\vec{v} \cdot \vec{v}}$
Tools for Dot Products,

- distribute the dot
geometry $\rightarrow A B \cos \theta$ esp. of vector sums: © orthonormal components $\rightarrow \sum_{i} A_{i} B_{i} \&$ Pythagoras

Piece \#1: Expressing Vectors in Component Form

(1) $\vec{v}=\sum_{i=1}^{3}\left(\vec{v} \cdot \hat{r}_{i}\right) \hat{r}_{i} \quad$ for any complete, orthonormal set of unit vectors $\hat{r}_{1}, \hat{r}_{2}, \hat{r}_{3}$

Piece \#2: Playing with Differentials

(2) $\frac{d f}{d x}=g$ is equivalent to $d f=g d x$
i.e.: You can algebraically manipulate differentials $d f$ like finite numbers Δf (rearrange, regroup, etc), then mentally return them to d 's \& derivatives at the end.

Tactic for changing variables in differential equations: multiply by d<blah> / d<blah>, then regroup differentials into new derivatives.

Piece \#3: The 3D Chain Rule
(3)

$$
d f\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}} d x_{i}
$$ where the variables x_{1}, \ldots, x_{n} are all independent

In words: The change $d f$ that occurs in a function f when the independent coordinates x_{i} on which it depends are changed by amounts $d x_{i}$ is just sum of each change $d x_{i}$ times the relevant slope $\partial f / \partial x_{i}$.

Piece \#4: Functions Do Not Commute With Operators

4 e.g. $\frac{d}{d x} f \neq f \frac{d}{d x} \quad \& \quad \vec{\nabla} f \neq f \vec{\nabla}$

In both examples, the object on the left is just a function: a derivative of f. The object on the right is an operator: it will act on whatever comes next.

Piece \#5: 1D Derivatives "Push Through" Dot- and Cross-products

5 e.g. $\frac{\partial}{\partial q}(\vec{A} \cdot \vec{B})=\frac{\partial \vec{A}}{\partial q} \cdot \vec{B}+\vec{A} \cdot \frac{\partial \vec{B}}{\partial q} \quad \& \quad\left(\vec{A} \frac{\partial}{\partial q}\right) \times \vec{B}=\vec{A} \times\left(\frac{\partial \vec{B}}{\partial q}\right) \quad \begin{aligned} & \begin{array}{l}\text { for any vector fields } \\ \vec{A} \text { and } \vec{B} \\ \text { on that depend }\end{array}\end{aligned}$
Not obvious? Try it in Cartesian coordinates ... you'll see. © Since the final result makes no reference to any coordinate system, your Cartesian proof will be perfectly general.

