Phys 325 Discussion 1 - Some Math Review
 a.k.a. "Post-vacation Reboot"

Q1. Accelerating Bee

Checkpoints ${ }^{1}$
A bee moves along a helical path given by the equation $\vec{r}(t)=\hat{x} b \sin \omega t+\hat{y} b \cos \omega t+\hat{z} c t^{2}$.
Calculate the magnitude the bee's acceleration in terms of the constants b, ω, and c.

Q2. Taylor Series

Checkpoints ${ }^{1}$
Consider the definite integrals $I_{1}(a)=\int_{0}^{a} \frac{1-\cos x}{x^{2}} d x$ and $I_{2}(a)=\int_{0}^{a} \frac{\sin x}{x} d x$
(a) Calculate the two leading non-vanishing terms in the Taylor expansion of $I_{1}(a)$ and $I_{2}(a)$ for small $a \ll \pi$. (You will need the Taylor series for sine and cosine for small arguments)
(b) Using the Taylor expansion of part (a), estimate the values of $I_{1}(1)$ and $I_{2}(1)$.

Q3. Div \& Curl

Checkpoints ${ }^{1}$
Here is a vector field: $\vec{F}(x, y, z)=x^{3} z^{4} \hat{x}+x y z^{2} \hat{y}+x^{2} y^{2} \hat{z}$.
(a) Calculate the divergence $\vec{\nabla} \cdot \vec{F}$ of the field.
(b) Calculate the curl $\vec{\nabla} \times \vec{F}$ of the field.
(c) Evaluate the divergence of your result from part (b): $\vec{\nabla} \cdot(\vec{\nabla} \times \vec{F})=$? Thereby confirm, at least for this case, the useful identity $\vec{\nabla} \cdot(\vec{\nabla} \times \vec{A})=0$, which is true for any vector field \vec{A}.

Q4. Hill Geography

Checkpoints ${ }^{2}$
The height of a hill is given by $z(x, y)=\eta\left(2 x y-3 x^{2}-4 y^{2}-18 x+28 y+12\right)$, where $\eta=0.02$ meters $^{-1}$, and where x is the distance east of the origin and y is the distance north of the origin (both in meters).
(a) At what point (x, y) is the top of the hill located?
(b) How steep is the hill at the point $(x, y)=(1,1)$? That is, what is the angle between a vector perpendicular to the hill and the z-axis?
(c) You are at the point $(x, y)=(1,1)$ and you drop a ball from your hand. Naturally, the ball rolls in the downhill direction. In which compass direction does the ball roll?

Q5. Mystery Vector

Checkpoints ${ }^{2}$
An unknown vector \vec{v} satisfies these two equations: $\vec{b} \cdot \vec{v}=\lambda$ and $\vec{b} \times \vec{v}=\vec{c}$ where λ, \vec{b}, and \vec{c} are known constants. What is \vec{v} in terms of λ, \vec{b}, and \vec{c} ? One possible hint: $\vec{A} \times(\vec{B} \times \vec{C})=(\vec{A} \cdot \vec{C}) \vec{B}-(\vec{A} \cdot \vec{B}) \vec{C}$.

[^0]
[^0]: $\mathrm{Q} 1 \sqrt{b^{2} \omega^{4}+4 c^{2}} \quad \mathrm{Q} 2(\mathrm{~b}) I_{1}(1) \approx 35 / 72, I_{2}(1) \approx 17 / 18 \quad \mathrm{Q} 3$ (a) $3 x^{2} z^{4}+x z^{2}$ (b) $\left(2 x^{2} y-2 x y z\right) \hat{x}+\left(4 x^{3} z^{3}-2 x y^{2}\right) \hat{y}+y z^{2} \hat{z}$
 ${ }^{2} \mathrm{Q} 4$ (a) $(-2,3)$ (b) $\cos ^{-1}\left(1 / \sqrt{1+2(22 \eta)^{2}}\right)=31.9^{\circ}$ (c) direction $(\hat{x}-\hat{y})$, i.e. southeast $\quad \mathrm{Q} 5 \quad \vec{v}=(\lambda \vec{b}+\vec{c} \times \vec{b}) / b^{2}$

