Phys 325 Discussion 4! — The Space Shuttle

Last week, we began our study of multi-particle mechanics with a two-particle system: a rocket and its exhaust.
We used the general form of Newton’s second law, F = dp / dt (as opposed to the special form, F = ma , that

only applies when mass is constant), to derive the master differential equation for rocket motion:

. . EXT
my=—-nv>*+F

e m and v are the mass and speed of the rocket; m includes any fuel the rocket has on board.

vex is the speed of the exhaust = the fuel ejected out the back of the rocket. It is a design parameter of the
rocket so it is always measured relative to the rocket’s frame of reference.

e The term —rv®™ is called thrust and has units of force.

FEXT ig the sum of forces of external origin (e.g. gravity, air resistance) that do not arise from the rocket’s
primary means of locomotion (recoil against the expelled fuel).

One final but very important note: The above equation describes 1-dimensional motion only — along the rocket’s
direction of motion — so that “FEXT” is a bit disturbing: written like that, it looks like the magnitude of an
external force ... but it is not! It is a force component. The v is similarly disturbing: magnitude or component?

The distinction is important because of signs:
Vector magnitudes are always positive, but vector components can be positive or negative.

When you’re working in 1 dimension, it is annoying to carry component-subscripts around all the time, but
honestly we really should or we could easily make a sign error. Let’s rewrite our rocket equation in this fashion.
First, define +x to be the direction in which the rocket is pointing. The exhaust will always emerge in the —x
direction relative to the rocket, and the thrust it creates will always push the rocket forward = toward +x. The
rocket equation in careful, component form is then

. EXT
my_=-mv, +F,

Since v, can be negative, we can now accommodate without confusion a situation where, e.g., the external force
overwhelms the thrust and causes the rocket to move backwards.

Q1. Shuttle Launch = Taylor 3.7 & 3.9; Checkpoints 2

The first couple of minutes of the launch of a space shuttle can be described very roughly as follows: The initial
mass including fuel is 2 x 106 kg, the final mass (after 2 minutes, when the fuel is gone) is about 1 x 10° kg, the
average exhaust speed relative to the rocket is ve* = 3,000 m/s, and the initial velocity is zero.

(a) If all this were taking place in outer space with no gravity, what would be the shuttle’s final speed?
(b) Assuming that the rate —rz at which the fuel is ejected is a constant, what is the thrust during these two

minutes and how does it compare with the shuttle’s initial total weight (on Earth)?

(c) Now add in the gravitational field g at the surface of the Earth. What is the minimum exhaust speed, v""
for which the shuttle would just begin to lift as soon as fuel burn is underway? (Keep all other design
parameters unchanged.) Hint: The thrust must at least balance the shuttle’s weight.

I The assignments are numbered by week — there was no discussion #3 because of the holiday last week.
2Q1 (a) 2,100 m/s (b) Fihust =2.5 x 107 N, Fgrav =2.0 x 107N (c) 2,400 m/s



Q2. Shuttle vs Gravity inspired by Taylor 3.11; Checkpoints 3

The space shuttle takes off vertically from rest in the Earth’s gravitational field g.

(a) Write down the master differential equation for the shuttle’s motion in gravity by including the appropriate
quantity for Fext. Remember: both the magnitude and sign of this term are important.

(b) Assuming that the rocket ejects mass at a constant rate —riz = k (where £ is a positive constant), solve your

differential equation for v as a function of 7. Self-check: v(¢)=v" ln[#j —gt
—kt /' m,

FYI: Note how this expression is arranged in the form recommended in Phys 225: quantities are grouped into
dimensionless terms as much as possible (i.e. in the argument of that logarithm — the only place we can do it).
You will see the advantages of this form in part (d)!

(c) Using the shuttle data from the Q1, find its speed two minutes into flight, assuming that it travels vertically
upward during this period and that g doesn’t change appreciably. (Both of these assumptions are excellent
approximations.) Compare with the corresponding result when no gravitational force is present.

(d) The right-hand side of your master differential equation from (a) has two terms: the thrust term and the
gravitational term. Describe what would happen to a rocket that had an initial velocity vo (instead of zero) but
was designed so that the thrust term was smaller than the initial value of the gravitational term. Hint: To figure
it out, use 1st-order Taylor approximations (see footnote*) to determine the approximate behavior of v(¢) from
part (b) for small times ¢, right after the engines kick in. “But what is small”, you ask? Perfect question! The
answer is supplied by the elegant dimensionless-term form we used in part (b): we see clearly that the
logarithm’s behaviour is controlled by the comparison between ¢ and the timescale m/k. The small-time
approximations you want are thus for times when kt/mo < 1.

(e) After that nice exercise in approximation, return to the normal situation when the shuttle starts from rest and
the thrust force exceeds the gravitational force. Using your approximation skills and the part (b) formula, make
a plot of the shuttle’s speed vs time. Be sure to indicate the values (in symbols not numbers) of any important
points on your graph, e.g. any starting or ending values, whether they’re reached actually or asymptotically.

Q3. The Shuttle Climbs inspired by Taylor 3.13

(a) An engineer designs a new rocketship with parameters vex, mo, and k. The engineer's intern uses those
parameters to calculate y(#) = the rocket’s height as a function of time, then sends the result to you. Your job is
to ensure the rocketship can make it from earth to the International Space Station in a certain amount of time
(e.g. before the cockpit runs out of air — that’s why you need to know y(#)!) The intern sends you this:

y

l ex
y(t)=v"t— Egt2 _ v ln(

. ) with  vex=3x103m/s, mo=2x100kg, k=8.3x103kg/s

m

Are you satisfied with this email? What email might you send back to the intern? ©
(b) Using the v(¢) formula from Q2(b), calculate y(#) yourself and confirm that the intern at least didn’t make

any errors in calculation. You’ll need this integral: Jln(x) dx=xIn(x)—x

(c) Using the data from the intern (same as from Q1), show that the ship’s height after 2 minutes is = 40 km.

3Q2 (c) 900 m/s with gravity, 2,100 m/s without (d) v(t)—v, = vk / m,)t— gt <0 — v diminishes (e) check plot with your TA

4 Here is the Taylor Collection from the Phys 225 1Dmath formula sheet: the five most useful leading-order Taylor approximations
forsmalle « 1: e (l+e)"= 1+ne esin(e)=e ocos(e)=1-€%2 eoln(l+e)=e eet=I+e They’ll save your life someday. ©



