
Phys 325 Discussion 5 – Orbit and Spin

Here are the key formulae we proved for particle collections (also provided at the beginning of Homework 4):

	

 • P - total momentum	

  

P = M

R 	

  

FEXT =

P = M
R 	

 	

 with CM definition 

 
M

R ≡ mi

ri
i
∑

	

 • L - total angular mom.	

 Lω = Iωω 	

  

τ EXT, (A) =

L (A) 	

 	

 with definition Iω ≡ mir⊥ i
2

i
∑

Notation:  capital letters denote collective properties, and sub/super-scripts have specific meaning: 
	

  

P,

L,

F, τ ,M 	

 TOTAL momentum, angular momentum, force, etc of/on the collection

	

  

R,X,


V ,

A 	

 position, velocity, or acceleration of the collection’s CENTER OF MASS 

	

 subscript	

 means “OF”  →  
rA  = position OF point A  …  


LCM  = angular mom. OF the CM

	

 superscript ()	

 means “RELATIVE TO”  →   

τ (A)  = torque RELATIVE TO POINT A  =

rA ×

F

	

 superscript ′	

 means “RELATIVE TO the CM”  →   

′L ≡

L(CM)

Today’s job is to add an extremely useful result:  L (total) = LCM (of the CM) + L′ (around the CM).  In symbols:

 


L = 

LCM + ′


L =


R ×

P + ri′ ×

pi′
i
∑

Note the use of primes as a convenient shorthand for “relative to the CM”.  The most evocative example of 
this decomposition is the motion of the earth around the sun.  The earth has two types of angular momentum: it 
orbits around the sun and it spins around its own axis.  Those are the two terms in our decomposition: 

• Suppose our particle collection is the Earth and the origin of our coordinate system is the Sun.

•  

LCM =


R ×

P  describes the motion of the CM around the origin ➔ center-of-Earth around Sun = Orbit

•
 


′L = ′ri

i
∑ × ′pi  describes the motion of the particles around the CM ➔ Earth around its center = Spin

Q1.  Prove 	

 Hints & Checkpoints 1

Prove that the total 
 


L = ri ×

pi
i
∑  of a system around the origin can be written 

 


L =

R ×

P + ri′ ×

pi′
i
∑ .

(a)  Draw! A! Sketch!  Draw an origin, a random collection of particles, a center-of-mass position, and the CM 
vector  


R .  Then pick one of your masses, call it mi, and draw the vectors  

ri  and  
′ri ≡
ri −

R  that point to it.

(b)  This relation is key to our proof: 
 

mi
′ri

i
∑ = 0  .  Either prove it mathematically, or write a sentence that 

convinces you of its obviousness.  Your sentence might go something like this: “The sum on the left indicates 
the _____ relative to _____ , which is clearly ____”). Staring at the sketch will help.  That always helps. ☺ 

(c)  Go go go!  PROVE that 
 


L = 

R ×

P + ri′ ×

pi′
i
∑ .  

(d)  Finally, we need torque laws that tell us how each term of our decomposition changes with time.  
For L (OF the CM), show that  

LCM =

R ×

FEXT  = total torque on the CM, just as you would expect.  

For L (AROUND the CM), we already have an equation for  

′L  … look up top, and write down what it is.

1 (b) “… indicates the position of the CM relative to the CM, which is clearly zero”  

(c) Hint: decompose the  
ri ’s in  


L = ri ×

pi∑  to get  

L = (


R + ri ′ ) × mi (

R + ri ′ )∑  … (d)  

′L ≡
L(CM) =


τ EXT, (CM)



Q2.  Play in a Sandbox 	

 Checkpoints 2

To intuitively understand what we’ve proved, we need a sandbox: a familiar system that we can play with that 
incorporates both an “orbital” part and a “spin” part.  Here is a good 2D sandbox for experimenting: two masses 
moving in the xy plane with the y axis pointing up and uniform gravity g pointing down.  
Let’s use two equal point-masses m=1.  The left one is placed at (x, y) = (–b, h) and dropped from rest; it hits 
the ground (y=0) at time T.  The right-hand mass is placed at (x, y) = (+b, 0) and thrown vertically upward; its 
initial velocity is chosen so that at time T when the left mass hits the ground, the right mass reaches the height h.
(a)  As our given parameters, let’s use b, h, and T — an unusual choice, but it makes the upcoming expressions 
more elegant, trust me.  Before you do anything else, calculate v0 (initial velocity of the right mass) and g 
(gravitational acceleration) in terms of h and T and put them in boxes → we’ll need those relations.
(b)  We know the solution to this problem!  That’s why it’s a good sandbox. ☺  Write down the trajectory 
xL(t),yL(t) of the left mass and xR(t),yR(t) of the right mass, then determine their velocities  

vL (t) and  
vR (t) .

(c)  Now the Center of Mass!  Where is it?  Write down its trajectory X(t),Y(t) and its velocity  

V (t) .

(d)  Make a plot of the CM’s height vs time, Y(t), and its velocity V(t). Take as much time with these plots as 
you like to convince yourself that you understand the motion of the CM. 
(e)  The CM is supposed to behave as if the total mass M of the system is located at the CM position and is 
subject to the total external force on the system:  

P =

FEXT = M

R .  Evaluate  

FEXT  &  M

R  and see if they match. 

(f)  On to Angular Momentum around the Origin: calculate the total  

L  of our 2-particle collection. 

For your convenience, when  
r  is in the xy-plane and  

v  is in the y direction only:   
r × v = ẑ xvy = ẑ xy . 

(g)  The total angular momentum is supposed to obey the elegant collective relation  
L =

τ EXT  that reflects the 

cancellation of internal forces (just like  
P =

FEXT ).   What is the total  


τ EXT ?  Convenience:  

r × Fyŷ = ẑ xFy

(h)  That was the left-hand side of 
 


L = 

R ×

P + ri′ ×

pi′
i
∑ =


LCM(orbit)+ ′


L (spin) .   Now the right-hand side.  Is 

there any “Orbital” part here? → What is the angular momentum  

R ×

P  of the CM around around the origin?

(i)  Now the “Spin” part: calculate the total  

′L  around the CM and verify that the relation holds! 

Q3.  Shift 	

 Checkpoints 3

One of the most confusing aspects of angular momentum is how it changes depending on where we place the 
origin.  It is very important to understand this! ➔ Let’s shift our origin to the left by a distance b.  The masses 
will now be moving along the lines xL = 0 and xR = 2b, and the CM will move along X = b.  The y(t) vertical 
trajectories of the masses and the CM will be unchanged ... but the angular momenta will change.  Let’s see!

(a)  Calculate the total  

L  and   


τ EXT  around our new origin and verify that  

L =

τ EXT .  

(b)  Calculate the orbital motion of the CM,  

LCM = 


R ×

P , around our new origin. Has spin= 


′L  changed?  (No.)

(c)  Finally calculate the torques  

τCM
EXT  and  


′τ EXT , and check their relations to  


LCM  and  


′L .

2 (a) g = 2h/T2, v0 = 2h/T    (b) xR(t) = b, yR(t) = h (2t/T – t2/T2), xL(t) = –b, yL(t) = h (1 – t2/T2)     (c) X(t) = 0, Y(t) = h (½ + t/T – t2/T2)
  (e) both = −2mg ŷ    (f)  


L = ẑ 2bh / T = constant   (g)  


τ EXT = 0   (h)  


LCM = 0    (i)  


′L = ẑ 2bh / T

3 (a)  

L = ẑ (4bh / T )(1− t / T ) ,   


τ = − ẑ 4bh / T 2   (b)  


LCM = ẑ (2bh)(1 / T − 2t / T 2 ) ,  


′L = ẑ 2bh / T   (c)  


τ CM = − ẑ 4bh / T 2 ,   

′τ = 0


