
Phys 325 Discussion 6 – Rollers, Strings, and Pulleys

Many rigid body problems include rolling objects, massless connectors, and/or strings & pulleys.  Working 
with these objects requires some thought.  Specifically, each of these three object classes brings with it a 
condition that you must usually apply to solve the problem:

	

 (1)  Rolling objects: apply no-slip condition (usually ω =V / r ) to relate rotation speed to CM speed.

	

 (2)  Massless connectors: apply zero net force condition on any massless object.
	

 (3)  Strings and pulleys: apply conservation of string length condition.

The first condition is covered in lecture.  The other two need some comment and some examples. 

Problem 1:  Explanation of Techniques (2) and (3)	

 Checkpoints 1

Many mechanics problems feature massive objects that are connected by “massless” chains, support beams, 
strings, etc.  Of course “massless” means “of negligible mass compared to everything else”, but the point is that 
you can treat such objects as having zero mass.  Here’s how: 

The total external force on any massless object must be zero.

Why?  Because  

FEXT = M

R , so if an object has zero total mass and non-zero total external force, it will have 
infinite acceleration!  That is a non-physical situation, so we must ensure that FEXT = 0 on any massless object. 

In the figures below, a dog and a cat are each trying hard to move in the direction they’re facing.  On the left, 
they’re connected by a massless string and putting it under tension (= “stretching” force); on the right, they’re 
connected by a massless bar and putting it under compression (= “squeezing” force).  The arrows turn the 
figures into free-body diagrams (FBDs) for the connectors, i.e. diagrams that show all the forces acting on the 
string and the bar.  With our arrows and our labeling, we ensure that the forces on either end are equal and 
opposite, and this imposes the zero net force condition on our massless objects.  Here’s the result: 
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(a)  It is likely that we are interested in the motion of the massive objects – the dog and the cat – rather than the 
connectors.  To determine the animals’ motion, we need different FBDs: ones that show the external forces 
acting on each animal.  First, the cat and the dog are trying hard to move forward; they push against the floor, 
and the responding force of friction pushes them in the direction they want to move.  The dog, being stronger, 
gets a force of Fd = 50 N from the floor, pointing to the right.  The smaller cat digs its claws into the ground but 
gets only Fc = 20 N from the floor, pointing to the left.  The masses of the dog and cat are md = 10 kg and 
mc = 2 kg respectively.  Use arrows & labels to turn the pictures below into FBDs for the dog and cat.

                  

1 (a)  Each animal should have two force arrows attached to it: (1) the friction force = Fc to the left for the cat and Fd to the right for 
the dog, and (2) the force from the attached connector = T pointing inward — i.e. toward the center of the string — for the left-hand 
figure and N pointing outward for the right-hand figure.  Flip the page for the string diagram.  (b) cat:  T − Fc = xc ,  dog:  Fd − T = xd

(c)  xd = xc  (d) T =
Fdmc + Fcmd

mc + md

 = 25 N  (e)  xstring = xd  = 2.5 m/s2  (f) FBD has only 2 forces: Fc and Fd; 
 
X =

Fd − Fc
md + mc

 = 2.5 m/s2   

Free-Body Diagrams
for string and bar

Free-Body Diagrams
for cat and dog



(b)  Let’s now focus on the string case.  Define the +x direction to point to the right, then write down the 
equations of motion you need to determine the animals’ accelerations  xd  and  xc .
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(c)  We have too many unknowns to solve for  xd  and  xc  yet → we need another relation.  It’s time to introduce 
the other technique on today’s menu: conservation of string length.  In almost all mechanics problems with 
strings or chains, they are assumed to behave like

Ideal Strings ≡  objects that are infinitely flexible (offer no resistance to being bent around 
corners or crumpled into piles) but whose length never changes.  No matter how much tension 
they are under, they never stretch.  For a bit more info beyond what we need today, see footnote2.

The length property is what we need today: for strings under tension, their total length is fixed, and that’s a 
condition we must apply to solve string problems.  The string between the cat and the dog is certainly under 
tension; use the fact that its length is fixed to write down an absolutely obvious but absolutely essential relation 
between  xd  and  xc .  

(d)  Now you can solve the problem!  But before you do, make a guess: given the values Fd = 50 N,  Fc = 20 N, 
md = 10 kg, and mc = 2 kg, what do you think the string tension T is?   ... 70 N?   ... 30 N?   something else? ...
Once you’ve made your guess, use your two equations of motion and the string-length condition to calculate the 
string tension.  Surprised? ☺ If so, see footnote3. 

(e)  What is the acceleration of the string?  If you are surprised at the answer, see footnote4.

(f)  So far, we’ve drawn FBDs for three different “free bodies”: the string, the dog, and the cat.  You can also 
draw FBDs for subsystems = combinations of connected objects.  This technique can be very helpful to isolate 
particular forces or motions!  The most common example is to analyze the entire system and treat the [ cat + 
string + dog ] system as your free body.  What are the external forces acting on [ cat + string + dog ]?  Draw and 
label them on an FBD and write down the corresponding EOM for the entire system.  
Your EOM should give you the acceleration  X  of the center of mass, and it should make sense. 
Reminder: FBDs never show forces that are internal to your chosen free-body, only external ones.  The reason 
for that is the wonderful cancellation of internal forces that led to our elegant collective-EOM,  


FEXT =

P .

One final comment about massless connectors: If you apply the zero net force condition to a small segment of 
a massless string, you immediately see that the tension at either end has to be the same … and since you can do 
that for every tiny segment along the string, you immediately get this often-quoted result: 

Tension has the same magnitude everywhere along a massless string.

2 FYI: An ideal string doesn’t have to be massless.  If it has mass, an excellent way to model it is as a chain of tiny beads connected by 
massless ideal strings.  That’s beyond today’s material, but is a very useful thing to know. 
3  Are you surprised that the string tension is not 70 N?   Well so am I!  ☺  I honestly find string tension to be the most utterly non-
intuitive concept in mechanics.  Hopefully your physical intuition is better, but please note how complex this thing is: it is not just the 
result of the external forces on the two ends → it also depends on the final acceleration of the objects, and therefore on the masses 
involved.  The best way to gain intuition is to play with your tension formula from part (d) and the upcoming acceleration formula in 
part (f) to see what they does in various limiting cases, e.g. when md >> mc or when Fd = Fc.  
4  Are you surprised that the string’s acceleration is not zero?  We carefully set things up so that the net force on the string is zero … 
yet clearly the dog, cat, and string are all accelerating at the same non-zero rate.  Reason: since F = ma, an object with no mass doesn’t 
need any force to accelerate!  

FBDs for
cat & dog



Problem 2 : Atwood’s Machine	

 Checkpoints 5

An Atwood machine is a simple device that was originally devised to measure g.  
It consists of two masses suspended at the ends of a string, with the string running 
over a massless, frictionless pulley whose axle is fixed.  There is only one relevant spatial 
dimension in this problem: vertical position below the pulley’s axle.  
The figure labels this position x for mass m1 and y for mass m2.  These positions 
are not independent, however, because of conservation of string length.  

(a)  Calculate the acceleration  x  of the mass m1 using: 

• two free-body diagrams (and their associated  

FEXT = d


P / dt  equations

of motion, of course → that is the point of drawing FBDs!), and
• the conservation-of-string-length condition.

About the string length condition:
• If you’re wondering how you can apply this condition when you don’t know the length of the string, the 

answer is you don’t need to know it.  Just give it a label, like l.  All you need to know is that l is constant. 
• String length always leads to a relation between different accelerations and/or velocities in the system.  

In the dog/cat problem, string length gave you  xc = xd  → the fixed length of the string forced any change 
in the cat’s position to be exactly the same as for the dog.  If you had needed a velocity relation instead 
(less common, but sometimes you do) it would have been  xc = xd .  Here, string length will relate  x  to  y . 

This is a warm-up problem.  If you’re not done in 5 minutes, read the hints in the checkpoint. 

(b)  When you applied conservation of string length, did you write l = x + y ?  If so, you ignored the part of the 
string that runs over the top of the pulley.  Oh no!  Must you go back and change your calculation?
Answer: NO.  You did exactly the right thing … but is it clear WHY?   

(c)  Draw a FBD for the massless pulley and use it to obtain a relation between the string tension T and the 
normal force FN exerted by the fixed ceiling.  Hint 1: Segments of a massless string are also massless.  
Hint 2:  A massless pulley has zero mass … and therefore zero moment of inertia; given that  τ = I ω , where  ω
is angular acceleration, what does that tell you about the net torque on a massless pulley?  

5 (a)  Hint #1: The only strategic issue here is which FBDs to draw.  You can analyze the forces on any of the following “free bodies”: 
mass 1, mass 2, the pulley, the string, the entire system, or any connected subset of objects.  Here’s the best tactic: try to avoid normal 
or tension forces that you don’t know and don’t care about.  In this problem you can’t avoid the string tension, since the string is 
connected to the mass whose acceleration you want … but you can avoid the normal force between the fixed platform and the pulley.  
The best free bodies to choose are m1 and m2.  
Hint #2:  When drawing the FBDs for m1 and m2, remember that the tension forces at the ends of the string are equal in magnitude & 
opposite in direction … but hold on, this string bends … what does “opposite in direction” mean here? → Think of it this way: 
objects under tension pull on both ends, while objects under compression push on both ends.  
Hint #3: If you are still unsure about how to draw those FBDs, flip the page.  
Answer:  x = g(m1 − m2 ) / (m1 + m2 )   

(b)  The string segment that runs over the pulley is of constant length (π × pulley-radius) so it doesn’t affect the fact that x + y = 
constant, which is all that matters: your goal is to get a relation between  x  and  y , not between x and y.  You can ignore any segment 

of constant length: just define your “l” to be the total length of the string minus any constant-length pieces.  
(c) FN = 2T.  Explanation: see the top part of the 3-in-1 free-body diagram on the next page.  It shows that the net force on the pulley is 
FN – 2T, and since the pulley is masssless, this net force must be zero.  About Hint 1: the vertical string segments have equal-and-
opposite tensions T at their top and bottom ends because they are massless.  About Hint 2: the torque-inducing tensions T on either 
side of the pulley have to be the same because the total external torque on an object with zero moment of inertia must be zero 
(otherwise you would have infinite angular acceleration).  This is the angular analogue of "zero net force on a massless object". 

y 
x 

m1 
m2 

FIXED!



Problem 3 : A Pulley and a Ramp	

 Checkpoints 6

Now let’s combine our techniques for rolling objects, massless connectors, and strings 
in one problem.  Below you see a solid cylinder of mass M and radius r rolling on a 
ramp of slope θ.  A massless string is wound around the cylinder, then runs up and 
over a pulley, and is finally connected to a suspended cube of mass m.  Uniform 
gravity g points down.  Reminder: the moment of inertia of a solid cylinder for 
rotation around its axis is I = Mr2 / 2 .  

You have one task: calculate the 
acceleration  y  of the cube. 

You can try to solve this without any 
assistance, but it’s a complex problem that 
requires 5 different equations.  If you would 
like some guidance,  follow the steps below. 

(a)  First, we need FBDs for both the cylinder and the cube, so draw and label all the 
forces acting on them.  You must introduce labels for two unknown forces: use T for 
the string tension and f for the frictional force between the cylinder and the ramp.  
(There is also a normal force between the cylinder and the ramp, but we will be able to avoid it.)  Also add the 
label ω to your diagram to denote the rotational speed of the cylinder, and be careful to pick a direction for it → 
let’s choose counter-clockwise (so that positive ω means x is increasing).  Show this choice with an arrow. 

(b)  You have five unknowns: x, y, ω, T, f , all of which may be time-dependent.  You thus need five differential 
equations to solve the problem.7  The first three are familiar force / torque laws,  


FEXT =

P  or  

τ (A) =

L(A) .  
Different choices are possible but I suggest these three:

1. force on cube     2. force on cylinder: component parallel to ramp    3. torque on cylinder around its CM
Set up these equations in terms of the givens m, M, r, θ and the unknowns x, y, ω, T, f (or their t-derivatives). 

(c)  The 4th equation is the no-slip condition on the rolling cylinder. 

(d)  Now do some algebra: combine equations 1,2,3,4 to get rid of all unknowns except x and y.  (It’s just 
algebra, you can just grab the answer from the checkpoint if you are confident of your algebra skills.) 

(e)  The last equation is conservation of string length … and it is a tough one because string is “removed” 
from the system as it winds around the rolling cylinder.  (That’s assuming ω is positive; if ω is negative, string 
is “added” to the system, but no worries: that sign will take care of itself.  Always treat variables as positive 
when deciding on the signs to put in your equations).  Two strategies are given in the checkpoint.

(f)  Get the final answer: what is the acceleration of the cube? 

6 (b) Eq#1:  my = mg − T     Eq#2:  Mx = Mg sinθ + f − T     Eq#3:  T + f = −Mr ω / 2    (c) Eq#4:  rω = x  or  r ω = x

(d)  4my − 3Mx = 2g (2m − M sinθ )    (e) Strategy 1: Let l = x+y be the amount unrolled string.  Then dl/dt is the rate at which string is 

unrolled from the cylinder, and that’s proportional to ω and r … think carefully, and you’ll see that dl/dt is –rω.  Strategy 2: Put an 
imaginary dot of paint on the string at the point it touches the cylinder.  The speed v of that dot up the ramp is the same as the cube’s 
downward speed  y … and the dot’s speed v is the same as that of the top of the cylinder relative to the ramp ... which is –2rω.

 Answer:  Eq#5 is  2 x = − y  or equivalently  2x = −y    (f)  Final Answer:  y = g 2m − M sinθ( ) / 2m + 3
4 M( )

7  Do we really need five equations?  Not necessarily → it is possible to be clever and avoid some of your unknowns.  In fact we 
already did: we have a 6th unknown = the normal force from the ramp, but our procedure is going to avoid it.  So we have already 
reduced the needed number of equations from 6 to 5.  I can’t find a way to get it below 5, but maybe you can!

3-in-1 FBD for 
Atwood machine
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