
Phys 325 Discussion 10 – Drilling Euler-Lagrange with Geodesics

Summary of Variational Calculus: If you want to extremize a quantity S that is integrated over some path 
{qi (t)}  of your system between fixed endpoints, and S is described by the integral 

 
S = L(qi (t),  qi (t), t) dt∫      with fixed endpoints t1, qi (t1), and  t2, qi (t2 ) ,

then the path {qi (t)}  that extremizes this integral satisfies the Euler-Lagrange (E-L) equation 
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      for each coordinate qi 

That’s it!  Solving calculus-of-variations problems is a 3-step game: 
	
 1. Set up the path integral S you are trying to extremize.  Use "The Procedure" from 225 to set up 
	
 	
 path integrals, and remember that the endpoints must be fixed.
	
 2. Play “match the letters” →  What’s the independent variable "t"?  
	
 	
 What are the dependent coordinates"qi"?   What’s the Lagrangian "L"? 
	
 	
 Compare your path integral to the form in the first box above to figure it out.
	
 3. Write down the E-L equation for each qi, then solve them for the path {qi(t)} that extremizes S.

Drilling with Geodesics 
Today, we will drill! drill! drill! on this common class of problems, using a few simplifications since this is new. 

• All problems have only one dependent coordinate q, and so only one E-L equation. 

• Each problem is a geodesic problem.  A geodesic is a path that minimizes the distance between two points.  
   This is exactly the sort of problem for which variational calculus is designed!  Your task will be to find the 
   path of shortest distance between two given points by extremizing the integral dl∫   in various situations.

• We won't spend any time solving the E-L equations (that's just math).  Instead, each problem will be a familiar 
physical situation; you'll be able to intuit the solution in advance, then verify that it solves the E-L equation.

DOT-NOTATION NOTE: It is common to use dot notation to denote the derivative  qi ≡ dqi / dt  even if your 
independent parameter is not time.  For example, if your independent variable is x and the path you seek is y(x),  
you might find it strange to write the derivative dy / dx as  y  instead of ′y .  You may use ′y  if you like, but the 
checkpoints all use  y .  The point is:  there is no possible confusion between ′y  and  y  since y is only a function 
of one variable = the one independent variable that serves as the integration parameter for your system’s path.

Problem 1 : Geodesic in the XY-plane with Cartesian coordinates 	
 Checkpoints 1

 We did this in lecture.  Go straight to Problem 2 if you attend lecture. 

(a)  Find the E-L equation for the geodesic path y(x) between the points (x,y) = (0,0) and (x0,y0).  
Remember, for all of these problems the steps are: 1. set up the integral, 2. play “match-the-letters”, 3. write 
down the E-L equation for the path you seek.  Also remember that we will not be obtaining the general solution 
of these equations, so do not perform the d/dt integral on the right-hand side of the E-L equ,                         ,
until you have a specific solution to test.  (It will waste a lot of time needlessly.) 

1  You don't attend lecture?  You're missing out, friend!  This class asks awesome questions that lead to many illuminating discussions.  

   (a) The independent coordinate is x, the dependent coordinate is y, and the Lagrangian is  L = 1 + y2  

   → E-L equation for y(x) is 
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,   i.e. 

 

y

1+ y2
= C  (constant).   (b)  Self-checking  
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(b)  Show that the straight-line path { x : 0→ x0 ,  y(x) = x y0 x0  }  solves your E-L equation and also satisfies 
the given boundary conditions (i.e. matches the given endpoints). 

Problem 2 : Geodesic in the XY-plane with 2D-Polar coordinates	
 Hints & Checkpoints 2

(a)  Find the E-L equation for the geodesic path r(φ)  between generic endpoints (φ1,r1)  & (φ2 ,r2 )  in the 
xy-plane.  Follow the steps: 1. set up the integral you want to extremize  2. play “match-the-letters”  3. write 
down the E-L equation for the path you seek.  Step 1 is often the tough one; there's a hint in the checkpoint.

● Strategy:  Do not perform the "d / dt" integral on the right-hand side of the E-L equation!  That derivative is 
usually a huge mess: it is a full derivative, not a partial one, so it hits every term that has any dependence your 
independent coordinate t … which includes all your dependent coordinates and their derivatives.  Taking "d / dt" 
is to be avoided unless absolutely necessary.  We're about to get a candidate solution to test, so wait until then!

(b)  Consider the specific endpoints φ1 = 0, r1 = X0  and φ2 = π / 2, r2 = ∞ .  Show that the path 

 φ : 0→ π
2
,  r(φ) = X0

cosφ
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 solves your E-L equation and matches the given endpoints.  

● Strategy:  Stick with sin and cos!  d
dφ

1
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 … leave that as it is, do not introduce tangent,  

secant, or cosecant or you will miss obvious trig identities when they appear.   In general, sticking with sin and 
cos while you're still manipulating expressions is good advice! 

(c)  What path is this?  Use a sketch or a transformation to Cartesian coordinates to figure it out.  

(d)  This time, let’s find the geodesic between two endpoints at the same angle, φ1 = φ2 ≡ φ0 , but different 
radii, r1 and r2.  Draw the situation, then write down a parametrization in polar coordinates for the path you 
know is the shortest distance between those two points.  

(e)  As you can see from the path you just parametrized, solving for r(φ) is not the way to proceed for these 
endpoints: the correct geodesic has r varying and φ fixed, and there is no way to express that in the form r(φ)!   
Instead we should solve for φ(r), with r as our independent variable.  Find the E-L equation for the geodesic 
path φ(r) in polar coordinates, then check that your answer to (d) does indeed solve it. 

Problem 3 : Geodesic on a Cylindrical Surface	
 Checkpoints 3

(a)  A cylindrical surface is centered on the z-axis and has radius b.  Find the E-L equation for the geodesic path 
z(φ) on the surface of this cylinder between generic endpoints (z1,φ1)  and (z2 ,φ2 ) .  

2 (a)  Hint: You're minimizing path length so S = dl∫ .  Next you need dl in 2D-polar coordinates.  Write down the line element  d

l  

        for (r,φ)-space, then take its magnitude to get dl.  If you're stuck on  d

l itself, recall the 225 mantra: the line element is

        how far you move when you increase each of your coordinates by a little bit d<coordinate>.  If you're still stuck, (r,φ)-space is 
        identical to the (s,φ)-subspace of cylindrical coordinates, and that's on your 3Dmath formula sheet.   

        Answer:  L = r 2 + r 2  →   E-L is
 
 

r
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        (c) straight line from (x,y) =(X0,0) to (X0,∞)   

   (d) straight radial line: 
r   :  r1→ r2

φ(r) = φ0
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    (e)  L = 1+ r 2 φ 2 →  E-L is 

 
0 =
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   i.e. 

 

r 2 φ

1+ r 2 φ 2
= C  (constant) 

3 (a)   L = b2 + z2  →  E-L is 
 
0 =
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z

b2 + z2
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,  i.e. 
 

z

b2 + z2
= C  (constant)    (c) z(φ) =

hφ

π
 = half-turn spiral



(b)  Show that  z(φ)  = constant satisfies your E-L equation.

(c)   z(φ)  = constant is the general solution for this geodesic, cool.  Write down the specific solution for these 
endpoints: (z1,φ1) = (0,0)  and (z2 ,φ2 ) = (h,π ) , and describe / sketch the shape of the path you obtain. 

Problem 4 : Geodesic on a Spherical Surface	
 Checkpoints 4

(a)  A spherical surface is centered on the origin and has radius R.  The Earth's surface is a perfect example to 
guide your intuition!  Find the E-L equation for the geodesic path θ(φ)  on this surface between generic 
endpoints (θ1,φ1)  and (θ2 ,φ2 ) . 

(b)  Consider the specific case of endpoints with the same polar angle, θ1 = θ2 ≡ θ0 , but different azimuthal 
angles φ1  and φ2 .  In the Earth analogy, these would be points at the same latitude.  What is the path of shortest 
distance between two such points?  Try the solution θ(φ)=constant and show that it only works for a specific 
endpoint-angle θ0.  What is this θ0?  Sketch the situation and show that your finding makes perfect sense. ☺ 

(c)  Now flip the problem around and obtain the E-L equation for the geodesic φ(θ) , i.e. with θ as the 
independent variable this time.  

(d)  Consider the specific case of endpoints with the same azimuthal angle, φ1 = φ2 ≡ φ0 , but different polar 
angles θ1  and θ2 .  In the Earth’s-surface analogy, these would be points at the same longitude.  What is the path 
of shortest distance between two such points?  You know what it is … write down the solution you know must 
be true, then check that it satisfies your Euler-Lagrange equation from part (c).  

GENERAL STRATEGY ISSUE — What's the best "t"? 
In almost all variational problems, you are free to choose your independent variable "t" from among the set of 
coordinates specifying your system's configuration.  The best choice depends on the problem.  In Problem 2(d,e) 
you found a case where one choice (t = φ) was unable to handle a special class of solutions (those with φ fixed 
and r varying independently of φ), so you had to switch to the other choice (t = r).   In this week's homework, 
you will find other considerations, e.g. picking an independent variable that produces a Lagrangian with a cyclic 
coordinate is often of enormous help.  In any case: 

If you run into trouble with one choice of "t", try another choice.  
The best way to gain strategy-boosting experience is to solve variational problems with different choices of "t" 
and see how your choices affect the solution. 

4 (a)   L = R sin2 θ + θ 2  →  E-L is  
 

sinθ cosθ

sin2 θ + θ 2
=
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θ

sin2 θ + θ 2

⎛
⎝

⎞
⎠

  (b)  E-L equation for θ(φ)=constant give cosθ = 0 , so this solution only works when the endpoints θ1 = θ2 ≡ θ0  — which the 
geodesic path must pass through — satisfy cosθ0 = 0 .  The solution θ(φ)=constant thus only works when θ0 = 90º , i.e. for points 
on the equator.  This fact is familiar if you’ve ever taken an airplane flight between cities at similar latitudes, e.g. New York to Paris. 
The airplane does not fly at constant latitude over the atlantic, its trajectory goes “up” toward the north pole then “back down” again.   

  (c)   L = R 1+ φ 2 sin2 θ  →  E-L is  

 

φ  sin2 θ

1+ φ 2 sin2 θ
= C (constant)    (d)  Path = 

θ   :  θ1→θ2

φ(θ ) = φ0
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 = 
meridian of
constant longitude

This path is a segment of a “great circle” = any circle on the surface of the earth whose center coincides with the Earth’s center.  
Segments of great circles are the general solution for geodesics on a spherical surface.  This explains e.g. why airplanes go over / near 
the north pole when travelling between cities in the northern hemisphere.  Unfortunately, the parametrization of a great circle looks 
spectacularly ugly unless your endpoints lie on a meridian of constant φ (part (d)) or on the equator (part (b)).  


