
Phys 325 Discussion 11 – Welcome to Lagrangian Mechanics

Procedure for Lagrangian Mechanics: In last week’s lectures, we presented the elements of Lagrangian 
mechanics and worked some examples.  This week we will prove that the approach is valid, but the proof will 
be much more meaningful to you if you have worked with the procedure first.  Below, we will go through each 
step of the Lagrangian procedure using a simple example.  This week’s homework also presents these steps, so 
if you’ve started the homework already, you don’t need to read the paragraphs describing each step. 

Problem 1: Step-by-Step — Bead on a Fixed Ring	

 Hints & Checkpoints 1

The Example Problem:  A bead of mass m is threaded on a circular wire ring of radius R.  The ring is placed in 
the xy-plane, centered on the origin, and not allowed to move.  Uniform gravity g points in the –y direction, and 
there is no friction between the bead and the wire ring.  Our goal is to determine the motion of the bead.  

	

 Step 1: Figure out the number of degrees of freedom (DOF) of the system. We will call it n.  It is the 
number of coordinates of the system that can be varied independently.  To illustrate, a system composed of N 
point-like particles has 3N degrees of freedom, since each particle can move in three independent spatial 
directions.  However, if the particles are subject to constraint forces (normal forces, tensions, the binding 
forces that keep the ≈1023 atoms of a rigid object in a fixed shape, etc), restrictions are imposed on how the 
particles can move.  This reduces the number of degrees of freedom to n = 3N – nc, where nc is the number of 
constraint equations imposing restrictions on the coordinates’ values.  In summary, n is the minimum number 
of coordinates you need to completely describe the system’s configuration, given its constraints. 
(a)  How many degrees of freedom, n, does our example problem have? 

	

 Step 2: Select the n generalized coordinates {q1, q2, … qn} that you will use to describe the state of your 
system.  These qi can be positions, angles, combinations thereof, etc.  They can be anything as long as they
	

 • completely describe the system’s configuration at any given moment, and 
	

 • are independent of each other, meaning that you can change one without changing any of the others.
(b)  What generalized coordinate(s) could you choose for this problem?  

	

 Step 3: Calculate the Lagrangian   L(qi , qi , t) = T – U   of the system.  T and U are the system’s total 
kinetic and potential energy, written entirely in terms of your chosen generalized coordinates qi and/or the 
independent variable t = time.  U is the potential energy under the influence of all forces that can do any work; 
we call these supplied forces.  (If there are any forces that can do work but can't be described by a potential – 
friction is the prime example – the Lagrangian prescription cannot be used without significant hacking.)  The 
constraint forces cannot do any work by definition, so they do not appear in the Lagrangian at all.  As we will 
prove, the Lagrangian prescription itself takes care of the constraint forces, which is one of its great virtues!  

1 (a)  1   (b) If you are picking a coordinate from one of our 3 standard systems, the azimuthal angle φ is by far the best choice.  The 
bead’s x, y, or s coordinates may seem like reasonable alternatives, but they are a bit dangerous as they don’t completely describe the 
bead’s position : knowing the bead’s x-coordinate, for example, only restricts it to one of two positions on the ring.  If you are only 
interested in the motion of the bead on one half of the ring (e.g. if you only care about its motion near equilibrium), then one of these 
alternatives would be fine, but not very pleasant to work with.  (c)   L = 1

2
m R2 φ 2 − mgR sinφ   (d)   R

φ = −g cosφ  

(e) Reminder 1: You’ll need to make a Taylor approximation for small angles, as usual, but φ is not small in this situation; rather its 
deviations from φ0 are small.  Reminder 2: Change variables!  Rewrite your equation of motion in terms of the variable ε ≡ φ −φ0 , 

which is small near equilibrium.  Reminder 3: For a near-equilibrium analysis,  ε , ε , and ε  can all be made arbitrarily small; find the 

lowest order of  ε , ε , and/or ε  that appears in your EOM — that’s the “lowest non-vanishing order” — then drop all terms of higher 

order.  The final result is ω = g / r .  (f)   L = 1
2 m x 2 + y2( ) − mgy , constraint equation is x 2 + y2 = R2   (g) EOM:  x = 0, y = −g



Important: The Lagrangian must be expressed in the form  L(qi , qi ,t) : it must be written entirely in terms of 
your chosen generalized coordinates, their derivatives, time, and/or constants.  No other variables may appear!
The upcoming proof of the formalism will make it clear why this is necessary; below, we'll also test this 
restriction and explicitly show that it is necessary. 

(c)  Write down the Lagrangian for the bead in terms of  φ,  φ, t,  and/or constants.
Suggestion: The generalized coordinates you choose are of paramount importance, so it’s good practice to circle 
them right at the start of your work.  Do it: write down φ and circle it!  As you will discover, you usually have 
to introduce other variables when calculating your Lagrangian, so it is easy to lose track of your choice of qi’s. 

⚫ Step 4:  Apply the Euler-Lagrange equations to get the system’s n equations of motion:

 

∂L
∂qi

=
d
dt

∂L
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⎛
⎝⎜

⎞
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      for each generalized coordinate qi 

In the context of mechanics, these are just called the Lagrange equations.  (Prof. Euler is thus relegated to the 
realm of general variational calculus, i.e. pure mathematics.)
(d)  Write down the bead’s one equation of motion.  

⚫ Step 5: Solve the equations of motion to determine the system’s behavior q1(t), q2 (t), ...,qn (t) .
(e)  The differential equation you obtained cannot be solved analytically for φ(t).  It can be solved it in an 
approximate case, however: find the frequency ω of small oscillations of the bead around the stable-equilibrium 
position φ0 = −π / 2 .  If you have forgotten the procedure for small-oscillation analysis, three reminders are 
provided in the checkpoint. 

(f)  That’s how Lagrangian mechanics works!  You go through the same 5 steps every time.  Now let’s address a 
common question: why did we make such a big deal in the first two steps about figuring out the number of DOF 
and choosing exactly n generalized coordinates?  Answer: the entire formalism depends on it.  You will see this 
when we go through the proof, but nothing builds intuition like experimentation!  Let’s try violating this rule 
and see what happens. ☺  Let’s use x and y as our coordinates.  We know that they’re not independent of each 
other because of the ring, but why not apply that constraint at the end of the procedure instead of at the start?  
Let’s try it! 
➔ Forget about the ring and write down the Lagrangian for the bead in terms of  x,  x, y, y, t,  and/or constants. 
     It is a really easy task … this rebellious plan is going well so far!  ☺ 
➔ Write down the constraint equation that relates x and y to each other because of the ring’s shape. 
     Our rebellious plan is to apply this constraint at the end, after we’ve determined the equations of motion. 

(g)  Since you have two coordinates, you will get two Euler-Lagrange equations of motion.  Write them down.

(h)  Now apply the constraint equation to replace all the y’s with x’s … and you will find that it’s impossible.  
The equations of motion are already hopelessly wrong.  That, friends, is the reason for the first two steps. ☺  



Problem 2 : Atwood’s Machine	

 Checkpoints 2

You remember Atwood’s Machine from Homework 6?  It consists of two masses tied to 
the ends of a massless string of length l, with the string running over a massless pulley 
whose axle is fixed in place.       

(a)  Use the Lagrangian prescription to find the accelerations  x  and  y  of m1 and m2.  

(b)  Was that easier than analyzing this device using Newton’s force-based procedure?  
You decide!  Remember, you have tensions and normal forces — constraint forces — to 
deal with in a force analysis, so you must draw free-body diagrams showing all the 
forces acting on each object (the two masses and the pulley, though for this particular 
problem you only need to analyze the forces m1 and m2).  If you would like to get a feeling for Lagrange-vs-
Newton, use forces to calculate  x .  The 3-in-1 free-body diagram is on the next page to help you.  

(c)  We already have an energy-based way to solve a system: conservation of energy.  The Atwood machine 
obviously conserves T+U, and that gives us one EOM: T+U = constant (1st-order form) or  T + U = 0  (2nd-
order form).  Since the Atwood machine has only one degree of freedom, one EOM is all you need!  In part (a), 
you already calculated T and U and applied the string-length constraint to write those quantities in terms on one 
DOF (x or y).  Calculate  T + U = 0  and see if gets you to the solution any faster than  ∂L / ∂x = d(∂L / ∂ x) / dt .  

Problem 3 : Double Atwood Machine	

 Checkpoints 3

The Lagrangian method didn’t particularly speed up our analysis of the Atwood 
machine, but even for such a simple problem you can already see one of its 
advantages: by getting rid of all constraint forces, it requires less thought (if not less 
paper) and so fewer possibilities for errors.  You also found that conservation of T+U 
has the same advantages.  Where the Lagrangian method really shines is for: 
(i) constrained systems with more than one DOF: more than one EOM is needed 
here, so even if T+U=constant, it's not enough to solve the problem (ii) systems 
where T+U is not conserved.  To see this in action, let’s revisit the notorious double 
Atwood machine, with two massless pulleys and two massless strings.  On 
Homework 6, your force-based analysis of this system required four separate EOMs 
to solve the system … let’s see how Monsieur Lagrange does with this one!   This 
system has two degrees of freedom; let’s choose the x and y distances labelled on the 
figure as our generalized coordinates.  Recall that the upper pulley has its axle fixed 
in place, but the lower pulley can move.   

(a)  Use the Lagrangian prescription to calculate the acceleration  x  of the mass 4m. 
TECHNIQUE:  Drop constant additive terms & constant scale factors from the 
Lagrangian.  Reason: our only use for the Lagrangian is to plug it into the Lagrange 
equations and get our system’s EOMs.  These equations involve only the derivatives 
of L, so additive constants have no influence.  The equations also have L on both 

2 (a)  Hint: This problem has only one DOF.  You can pick x or y as your generalized coordinate, but not both (!) since they are related 
by the constraint equation x + y = l.  Depending on your choice, the Lagrangian is   L(x, x, t ) =

1
2 x

2 (m1 + m2 ) + gx(m1 − m2 )  or 

 L(y, y, t ) =
1
2 y

2 (m1 + m2 ) + gy(m2 − m1 ) . Final answers:  x = g(m1 − m2 ) / (m1 + m2 )  &  y = − x    (b) self-checking 

3 (a)  With constant terms and factors dropped,  L = 2 x 2 + y2 − xy + gy  →   x = g / 7 and y = 4g / 7     (b)  you decide ☺ 



sides, so multiplicative constants cancel and have no influence.  Example: if  L = 3mx −mgx + 4mg , you can 
drop the constant term 4mg and the constant factor m and just use  L = 3x − gx .

☞  Was that easier than the force-based analysis?  For a reminder of its complexity, the 5-in-1 free body 
diagram you needed in Homework 6 is shown below. 

Problem 4 : Cylinder on a Ramp; Generalized Momentum & Force        	

 Checkpoints 4 

A cylinder of mass m, radius R, and moment of inertia I (for rotation around its central axis) rolls without 
slipping straight down an inclined plane, which is at an angle α from the horizontal.  Use as your generalized 
coordinate the cylinder’s distance x measured down the plane from its starting point.  

(a)  Calculate the Lagrangian for the cylinder.

(b)  We learned last week that the Lagrange equations can be written in the form

Qi =
dpi
dt

  where  Qi ≡
∂L
∂qi

= generalized force and 
 
pi ≡

∂L
∂ qi

= generalized momentum conjugate to qi. 

What are Qx and px for this system?  As is typical, sometimes these quantities are recognizable components of 
force/torque/momentum/angular-momentum, and sometimes they are "effective" forces and momenta that you 
cannot readily identify with a familiar quantity.  

(c)  Use the Lagrangian procedure to solve the problem → determine the cylinder’s acceleration  x .   

Free-body diagrams for single and double Atwood machines:	



                               

 

4  (a)  
 
L =
x 2
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m +

I
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⎝

⎞
⎠ + mgx sinα   (b)  Qx = mg sinα = Fx ,   px = x m + I / R2( )   (c)  

 
x =

g sinα

1 + I / mR2


