
Physics 325 – Homework #12	
 due in 325 homework box by Fri, 1 pm

This homework consists of typical Ph.D. qualifying exam problems, just with a bit more guidance than on the 
“qual” exam.  Use all the techniques you have learned, especially those concerning ... 

• Conserved quantities (a.k.a. constants of motion): always keep an eye out for them.
• They are enormously valuable in turning coupled differential equations into separated ones.  
• They give you 1st-order EOMs that may be easier to solve than the 2nd-order Lagrange equations. 
• If you are given boundary conditions (e.g. the usual "position & speed at t = 0"), you can use them to 

determine the value of a conserved quantity instead of just leaving it as an undetermined constant.  This is 
a great way to inject boundary-condition information into your solution. 

• You can often figure out conserved quantities by physical intuition rather than by cyclic coordinates.  The 
prime example is energy conservation: if you realize in advance that T+U is conserved, just apply it.  There 
is no need to build the Hamiltonian (which can be time-consuming) unless time is cyclic but energy is not 
conserved, and you really need another conserved quantity (e.g. if your Lagrange equations seem unsolvable).   
Also remember that if you have one DOF, you only need one EOM; if energy is conserved, "T+U = constant" 
has the same advantages as the Lagrange equations (energy-based, no constraint forces to worry about, etc).

• Energy conservation also has a unique advantage over the Lagrange EOMs, namely the second appearance of 
effective potential we discussed in Lecture 12A.  The slick UEFF method of equilibrium analysis cannot be 
applied to the Lagrangian if you have more than one DOF ... but it can be applied to "T+U = constant" under 
certain conditions.  

To demonstrate how helpful energy conservation can be, even in Lagrangian mechanics, and to remind you 
about effective potential, here is a homework-wide hint:

At least one part of each question can be simplified by using energy conservation and/or UEFF ...
and in a couple of cases, the use of energy conservation is essential.

Problem 1 : Spherical Pendulum	
 	
 	
 	


The “spherical pendulum” is just a simple pendulum that is free to move in any sideways direction.  (By 
contrast, the unqualified word “pendulum” or the explicit phrase “plane pendulum” implies that motion is 
confined to some vertical plane.)  The bob of a spherical pendulum moves on a spherical surface centered on the 
pendulum's support point; the length of the pendulum is the radius of this surface.  A convenient choice of 
coordinates is spherical (r, θ, φ) with the origin at the point of support and the z axis pointing down = in the 
direction of uniform gravity.  The angles θ and φ are a good choice of generalized coordinates.

(a)  Find the Lagrangian and the two Lagrange equations of motion.

(b)  Explain what the φ equation tells us about the z component of angular momentum, lz.  As always, it's not 
enough to guess, you must explicitly show how the quantity you get from your φ equation is related to lz. 

(c)  For the special case that φ = constant, describe what the θ equation tells us.  To be precise, what simple 
system does the spherical pendulum reduce to in this situation? 

(d)  Back to the general case!  Use the φ equation of motion to replace  φ  by lz (and other terms, of course) in
the θ equation, thereby constructing a separated equation for θ(t) alone.  Use this equation to determine an 
expression for the angle θ0 at which θ can remain constant.  Why is this motion called a “conical pendulum”? 

(e)  Using whatever method you like, show that if θ(t) = θ0 + ε(t) with ε very small, then θ oscillates around θ0 
in harmonic motion.  Find the frequency of these small oscillations in terms of θ0, g, and R. 



Problem 2 : Spring on a T

A rigid “T” consists of a long rod glued perpendicular to another rod of length l that is 
pivoted at the origin. The “T” rotates around in a horizontal plane with constant 
frequency ω.  A mass m is free to slide along the long rod and is connected to the 
intersection of the rods by a spring with spring constant k  and relaxed length zero. 
Calculate r(t), where r is the position of the mass along the long rod.  You should get 
three solution forms, depending on the relative values of ω2 and k/m. 

Problem 3 : A String Unwinds

A point mass m is attached to a thin, massless string whose other end is attached 
to a fixed cylinder of radius R at the point P.  Initially (t ≤ 0), the string is tightly 
wound all the way around the cylinder, with the point mass m located at point P 
on the cylinder.  Then, at t = 0, an impulse is delivered to the point mass so that it 
acquires a velocity v0 in the outward radial direction. (i.e. The impulse kicks that 
mass straight upward from point P).  This starts the unwinding of the string.  The 
figure shows the state of the system at a random moment t > 0, with s denoting 
the length of string that has been unwound and Q indicating the point where the 
string loses contact with the cylinder.  No external forces act on the system.  

(a)  Find the Lagrangian for the mass m in terms of the generalized coordinate θ, 
then solve for θ(t) using whatever method you like.  Remember to apply the 
given initial conditions to your solution: at t = 0, θ is 0 and the velocity of the 
mass is v0.  If you encounter a differential equation you can't solve, feel free to use wolframalpha.com.

(b)  Using your θ(t) solution, find the angular momentum of the mass m around the cylinder's axis of symmetry 
(which is perpendicular to the page).  Is angular momentum conserved?  Why or why not? 

(c)  Write down the total energy of the system and determine if it is conserved.

(d)  NEW SITUATION:  The cylinder is now free to rotate without friction around 
its axis of symmetry.  Take the cylinder have mass M and to be hollow with walls of 
negligible thickness.  (It thus has the word's simplest moment of inertia. ☺) 
Introduce the angle φ shown in the second figure to denote the cylinder's rotation 
angle relative to its initial (t = 0) orientation.  Calculate the Lagrangian for the 
[ cylinder + point mass ] system in terms of the generalized coordinates θ and φ, and 
use the symbol α ≡ (1+M/m) to simplify your expressions. 

(e)  Identify two conserved quantities and write them in terms of θ and φ.  Finally, 
solve for θ(t).  (Hint: those conserved quantities will help you!)  Which way does the 
cylinder rotate: clockwise or counter-clockwise? 

Problem 4 : A Sliding Ladder 	


A ladder of mass m and length 2l stands against a frictionless wall with its 
feet on a frictionless floor.  It is released from rest at time t=0 with initial 
angle α0.  Calculate the angle α* at which the ladder loses contact with 
the wall (i.e. when the normal force N1 goes to zero).  You may assume 
that the ladder loses contact with the wall before it loses contact with the 
floor.   Hint: read the note on page 1 about injecting boundary condition 
information. 


