When to Use Energy

Collisions

Proof of (T+U) conservation used $\vec{F}=m \vec{a}$ \qquad
$\dot{T}+\dot{U}=0$ always gives you back a force-based EOM.
It's often a more efficient way to obtain the EOM than using forces or torques, but more strategy tips are needed:

When do we NEED to use $\mathbf{d}(\mathbf{T}+\mathrm{U})=0$?
When force details are unknown.

- Elastic Collisions

All we know about the forces is that
"elastic" $\equiv \mathbf{T}$ is conserved in the collision.

- Known ΔE added / subtracted from system
e.g. particle explodes, releasing known $\Delta \mathrm{E}$
\rightarrow must use energy analysis to include this info.
When can we NOT use $\mathbf{d}(T+U)=0$?
When it's not true OR can't be calculated.
- $U(\vec{r}, t)$ with explicit t-dependence
- Forces that can't be described by $U(\vec{r})$ but do work
e.g. kinetic friction (depends on normal force),
drag force (depends on velocity),
force fields with $\vec{\nabla} \times \vec{F} \neq 0$
- Energy leaves / enters system in non-calculable way e.g. inelastic collisions where $\Delta \mathrm{U}^{\mathrm{INT}} \neq 0$
- System is losing mass, e.g. rocket motion

When details of interaction force not known, some other info must be provided.

Elastic Collision : total T is conserved

- Collision takes place in infinitesimal time interval $\Delta t \approx 0$
\therefore impulse collision force : $F_{\text {impulse }} \cdot \Delta t=\Delta P$

$$
\infty \quad 0=\text { finite }
$$

- $\Delta \mathbf{U}^{\mathbf{E x T}}(\vec{r})=\mathbf{0} \because \Delta \vec{r}=0$ (particles have no time to move!)
- Particle structure unchanged by collision $\therefore \Delta \mathbf{U}^{\mathbf{I N T}}=\mathbf{0}$
i.e. no energy can escape into deforming / heating / fragmenting the particles
- "Elastic" also implies that energy cannot escape to surrounding medium, e.g. via sound waves

Inelastic Collision : total T+UEXT not conserved

- Total Mass is conserved (non-relativistic systems)
- Classic example : Fusion / Fission of $\mathrm{N} \leftrightarrow 1$ particles

When particles fuse, KE of incoming particles converted into heat of fused particle $\because \Delta \mathbf{U}^{\mathbf{1 N T}} \neq \mathbf{0}$
Often useful : go to CM Frame

- Abrupt $\Delta \mathbf{T}_{\text {total }}$, i.e. that occurs over $\Delta t \approx 0$, is a signature of an inelastic process
$U^{E X T}(\vec{r})=0$ can't change over $\Delta t \approx 0 \because \Delta \vec{r} \approx 0$
$\therefore \Delta\left(T+U^{\mathrm{EXT}}\right)=\Delta T \neq 0 \rightarrow$ inelastic

