System = mass in uniform gravity, 1D vertical motion
Endpoints $=(y, t)$ from $(0,-\tau) \rightarrow(0,+\tau)$
Lagrangian $L(y, \dot{y}, t) \frac{2}{m}=\dot{y}^{2}-2 g y$
Path Class \#1 : constant speed going up \& coming down \rightarrow vary $\mathrm{H}=$ max height

- Paths

$$
y(t)=H\left(1-\frac{|t|}{\tau}\right) \rightarrow \dot{y}= \pm \frac{H}{\tau}
$$

- Lagrangian $L(t) \frac{2}{m}=\left(\frac{H}{\tau}\right)^{2}-2 g H\left(1-\frac{|t|}{\tau}\right) \rightarrow L(t) \frac{2}{m(g \tau)^{2}}=\left(\frac{H}{g \tau^{2}}\right)^{2}-2 \frac{H}{g \tau^{2}}\left(1-\frac{|t|}{\tau}\right)$

$$
\begin{aligned}
& \text { Define } b \equiv \frac{H}{g \tau^{2}} \text { and vary that } \ldots \text { true path has } H=\frac{g \tau^{2}}{2} \therefore b_{\text {ture }}=\frac{1}{2} \\
& \text { Drop } \frac{2}{m(g \tau)^{2}} \rightarrow L(t)=b^{2}-2 b\left(1-\frac{|t|}{\tau}\right) \quad \ldots \text { vary } b \text { and see what happens ! }
\end{aligned}
$$

plot $b^{\wedge} 2-2 b(1-A b s[t])$ for $b=\{0.1,0.25,0.5,0.75,1\}$ from $t=-1$ to 1

- Action

$$
S=\int_{-\tau}^{+\tau} L d t=2 \tau b(b-1)
$$

plot $b(b-1)$ from $b=0$ to 1.5

- Least Action $\left.\frac{1}{2 \tau} \frac{d S}{d b}\right|_{b^{*}}=0=2 b^{*}-1 \rightarrow$ min action at $b^{*}=\frac{1}{2}=b_{\text {true }} \odot \rightarrow S_{\text {min }}=-\frac{\tau}{2}$

Path Class \#2 : constant acceleration up \& down \rightarrow vary $\mathbf{a}=$ acceleration

- Paths $y(t)=v_{0}(t+\tau)-\frac{1}{2} a(t+\tau)^{2}$ and $y(\pm \tau)=0 \quad \therefore v_{0}=a \tau \rightarrow y(t)=\frac{a}{2}\left(\tau^{2}-t^{2}\right)$
- Lagrangian $L(t) \frac{2}{m}=a^{2} t^{2}+g a\left(t^{2}-\tau^{2}\right) \rightarrow L(t) \frac{2}{m(g \tau)^{2}}=\frac{a}{g}\left[\frac{t^{2}}{\tau^{2}}\left(\frac{a}{g}+1\right)-1\right]$

$$
\text { Define } b \equiv \frac{a}{g} \text { and vary that } . . . \text { true path has } a=g \therefore b_{\text {true }}=1
$$

$$
\text { Drop } \frac{2}{m(g \tau)^{2}} \rightarrow L(t)=b\left[\frac{t^{2}}{\tau^{2}}(b+1)-1\right] \quad \ldots \text { vary } b \text { and see what happens ! }
$$

plot $b\left(t^{\wedge} 2(b+1)-1\right)$ for $b=\{0.4,0.7,1,1.3,1.6\}$ from $t=-1$ to 1

- Action

$$
S=\int_{-\tau}^{+\tau} L d t=\frac{2 \tau b}{3}(b-2)
$$

plot $b(b-2)$ from $b=0$ to 1.5

- Least Action $\left.\frac{3}{2 \tau} \frac{d S}{d b}\right|_{b^{*}}=0=2 b^{*}-2 \rightarrow$ min action at $b^{*}=1=b_{\text {true }} \rightarrow S_{\text {min }}=-\frac{2 \tau}{3}<-\frac{\tau}{2}$ ©

