
Phys 326 Discussion 3 – Molecular Vibrations

One application of normal mode analysis is to describe the vibrational modes of molecules.  Each vibrational 
mode has a characteristic frequency (usually in the infrared range for molecules) that can be seen by studying 
the molecule with spectroscopic techniques (e.g. by looking for absorption lines in an IR spectrum).  A 
molecule’s characteristic frequencies are its fingerprints, allowing it to be identified in a sample.

The figure at right is a classical model of the CO2 molecule.  The 
positively-charged carbon ion C++ is in the middle and has mass m, while 
the two negatively-charged oxygen ions O– are on either side, each with 
mass M.  The CO2 molecule has no electric dipole moment, indicating that 
the ions lie on a line.  (This is unlike the H2O molecule, where the three 
ions form a triangle and a large electric dipole moment is present.)  The 
springs provide a classical approximation to the covalent bonds between the atoms; we label their spring 
constants “k” as usual.  

Problem 1 : Carbon Dioxide Longitudinal Motion 	 Checkpoints 1

Let’s define the +x direction to be to the right, and restrict our attention to the case when the masses can move 
only in the x direction.  Label the positions of the three atoms as usual: with x1, x2, and x3, where x1 = x2 = x3 = 0 
puts the system in equilibrium (both springs unstretched).  

(a)  Use your small-oscillation skills to calculate the three eigenfrequencies and associated eigenvectors of this 
system.  Don’t fear the 3x3 determinant, it factors very nicely.  :-)  

(b)  Hopefully you found a slow mode, a fast mode, and a “DC” mode of zero frequency.  First consider the two 
non-zero frequencies: find the normal mode solutions  

!xs (t) for the slow mode and  
!xf (t)  for the fast mode.  

(c)  In the language of molecular spectroscopy, the two modes you just found are called “symmetric stretch” and 
“asymmetric stretch” modes.  Sketch the modes, then figure out which term is appropriate for the slow mode 
and which for the fast mode.  

(d)  To complete our solution, we must also write down the zero-frequency “DC mode”,  
!xz (t) .  Think back to 

our discussion of DC modes in yesterday’s lecture ... and remember that each mode must have two free 
parameters. 

(e)  Describe the molecule’s motion in DC mode.  Spectroscopists do not have a cute name for this mode … in 
fact they do not care about this mode (except to toss it away) … if you are unclear on why this is, ask your TA! 
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   (b)   
!xs, f (t ) =

!
As, f cos(ω s, f t − δ s, f )   (c) slow mode = symmetric stretch,  fast mode = asymmetric stretch   

   (d)  Hint / reminder: go back to the equations of motion,  M
!""x = K!x , and try solving  M

!""x = K!x = 0 .  Answ: 
!xz (t ) =

!
Az x0 + v0 t( ) .  

   (f)  Hint: the general SHO expression A cos(ω t − δ )  can always be replaced with the equivalent form B cos(ω t ) + C sin(ω t ) ,
         where we have traded the two free parameters A & δ for the alternate pair B & C.  The second of these forms is usually much

         better for handling initial conditions!  Answ:  x1(t ) = P0
t
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(f)  Let’s see how these modes combine to give us a general solution that can accommodate any initial 
conditions.  Suppose our CO2 molecule is sitting at rest and in equilibrium, with no atom moving … then, at 
time t = 0, an impulse P0 in the +x direction is delivered to the left-hand mass.  (Whack!)  Find the subsequent 
motion x1(t) of the left-hand mass.  If you end up facing a great deal of algebra involving trig identities, an 
important hint is provided in the checkpoint. 

Problem 2 : Springs on a Circle	 Checkpoints 2

Two masses m are constrained to move on a circular hoop.  Identical springs of 
spring constant k are wrapped around the hoop and connect the masses to each 
other as shown.  The hoop is placed horizontal to the ground so that gravity can 
be ignored.  Finally, m and k are related by m = 2k. 

The figure defines the equilibrium positions of the masses: at the top and at 
the bottom.  Let x1 & x2 be the distances that the top & bottom masses are 
displaced from these equilibrium positions, measured around the hoop in the 
clockwise direction.  

(a)  Calculate the general small-oscillation solutions for x1(t)  and x2 (t) .

(b)  Describe the behaviour of the system’s normal modes using words and/or sketches.
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