
Phys 326 Discussion 4 – Normal Coordinates, Inner Product Spaces, and Degeneracy

Here is a summary of our description of normal mode solutions as an inner product space:  

	 • Space :  
!x(t) ≡  solutions of a linear oscillator system in terms of generalized coordinates  

!x

	 • Inner Product :      
!y !x ≡ !yTM !x                and associated magnitude :  

!x 2 ≡ !x !x

	 • Basis : âm  of eigenvectors defined by  K
!am =ωm

2M !am  and normalized by  âm = !am / |
!am |

	 • Basis is Orthonormal : ân âm = δnm
	 • Completeness for  

!x(t)  and associated definition of Normal Coordinates ξm : 

	       ξm  is the component of  
!x  along mode m :    

 

!x(t) = âm âm
!x(t)

modes m
∑ ≡ âm ξm (t)

modes m
∑    

	       ∴ definition of normal coordinates is :             ξm (t) =  âm
!x(t)   = Am cos(ωmt −δm )

Apart from the elegance of this formalism, normal coordinates can be a useful solving technique because they 
decouple the problem by modes.  
(1) The equations of motion are  Mki!!xi = −Kkj x j  in x-space, with each of the ODEs involving in general all of 
the coordinates xi.  In ξ-space, the EOMs decouple to  

!!ξm = −ωm
2ξm : one separated ODE for each normal 

coordinate ξm.  If our system has drag forces or driving forces to complicate the EOMs, we must decouple them, 
or we will not be able to apply our damped/driven oscillator solution techniques from PHYS 325 / MATH 285.  
Switching to normal coordinates is typically essential in these cases.  
(2) On a less essential note, initial conditions are usually easier to deal with in ξ-space.  Why?  The normal 
coordinates decouple not only the EOMs but also their solutions by modes: each normal-coordinate solution is

 ξm (t) = Am cos(ωmt −δm ) = !Ame
iωmt  or equivalently Bm cos(ωmt)+Cm sin(ωmt) , so it has 2 adjustable parameters 

that are completely independent (!!) of all the other adjustable parameters in your n-dimensional system.

Problem 1 : Normalized Basis & Normal Coordinates for Double Pendulum	 Checkpoints1

Let’s explore our new concepts using the double pendulum, where the {upper, lower} 
pendula have lengths {l1, l2}, attached masses {m1, m2}, and make angles {φ1, φ2} 
with the vertical.  Using φ1, φ2 as our generalized coordinates, the mass and spring 
matrices for small oscillations of the general double pendulum are:

M = m1l1
2 1+α αλ

αλ αλ2
⎛

⎝⎜
⎞

⎠⎟
  &   K = m1l1g

1+αλ 0
0 αλ

⎛

⎝⎜
⎞

⎠⎟
   where α ≡

m2

m1

 & λ ≡
l2
l1

 

(a) Using all the tricks in your bag, find the normal modes (frequencies and 
eigenvectors) for this particular double-pendulum configuration:

1  (a) ω S

2 = 4g / 3 ,  ω F

2 = 4g ,   
 

!aS =
1
2( ),  !aF = 1

−2( )    (b)   
!aS

!aF = !aS

T M !aF = 0,  yep!    (c) âS =
1

3
1
2( ),  âF = 1

−2( )
   (d)   ξS (t ) = !ASe

iω St ,   ξF (t ) = !AFe
iω Ft    (e)  ξS = 2φ1 +φ2( ) 3 / 4,  ξF = 2φ1 −φ2( ) / 4   (f) Hint: the EOMs are the rows of

          M
!""φ = −K

!
φ ; if that is not 100% clear to you, ask your instructor.  Transformed EOMs:  

!!ξS = −(4g / 3)ξS ,   
!!ξF = −4gξF

   (h) Hint: first find the t=0 values for ξS ,F  and  
!ξS ,F  … you then get BS = 3 3 / 2, BF = 1 / 2, CS = 3 3 / (8 g ), CF = −1 / (8 g ) .  

         Now you have the solution in ξ–space, ξS ,F (t ) → switch back to angles to obtain the final solution  
!
φ (t ) = ξS (t ) âS + ξF (t ) âF .



m1 = 3,      m2 = 1,     l1 = l2 =
1
2

    →       M = 1
4

4 1
1 1

⎛
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   and   K = 1
4

8g 0
0 2g
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⎝
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⎠
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(b)  Take the good old dot-product of the eigenvectors  
!aS  (slow mode) and  

!aF  (fast mode).  You should find 
that it is not zero →  

!aS  and  
!aF  are not orthogonal using that definition of the inner product!  Next, verify that 

 
!aS  and  

!aF  ARE orthogonal using the new inner product we derived (first box on page 1).  FYI: If you were 
very astute, you may have already used the orthogonality relation to find one of the eigenvectors; if so, bravo!

(c)  Use your new skills to normalize the eigenvectors, i.e. to obtain âS  and âF .

We now turn to the normal coordinates ξS and ξF for this system.  Until now, we have only used normal 
coordinates as a trick for solving 2-DOF systems that are symmetric under the exchange of the two coordinates, 
by decoupling the equations of motion.  Well, a complete set ξ1,…,ξn can be obtained for all linear oscillator 
problems, and they always decouple the n equations of motion.  You can regard that as their definition: the ξ’s 
are the coordinates that yield n completely decoupled EOMs.  Unfortunately, it is generally not possible to 
guess what they are in advance, so they are only useful as a trick for finding the normal modes in a few simple 
cases.  But the normal coordinates have other useful properties, so let’s explore them! 

(d)  As we know, the general solution for our double pendulum is the superposition of the two normal modes: 

 
!
φ (t) = "ASe

iωSt âS + "AFe
iωFt âF .  Using the definition 

 
ξm (t) =  âm

!
φ (t)  (second box on page 1) and your 

normalized eigenvectors, determine the ξS (t)  and ξF (t) as a function of time.  Do you see how they are the 

components of  
!
φ (t)  in our ân  basis?  Do you see how each ξm (t)  gives the behaviour of a single mode m? 

(e)  Now use the definition 
 
ξm  =  âm

!
φ  in a different way: instead of dropping in the full time-dependent 

solution  
!
φ (t)  on the right-hand side of that inner product, just drop in the coordinate vector  

!
φ = (φ1,φ2 ) .  

This time you will obtain ξS  and ξF  as a function of your generalized coordinates φ1 and φ2.   

(f)  You just found the transformation from our angle coordinates φ1, φ2 to the normal coordinates  ξS, ξF. 
Do these new coordinates really give decoupled EOMs, as advertised?  Let’s find out!  Write down the two 
equations of motion in terms of angles, then add and subtract them judiciously to transform them to normal 
coordinates.  What new EOMs do you get?  Important: you can read off the EOMs immediately from M and K; 
if you’re not sure how, see the checkpoint. 

(g)  We now have two coordinate systems, and so two ways of writing the general solution for our system:

 

φ1(t)
φ2 (t)
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     and     
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These are important expressions … to study them further, use your accumulated knowledge to demonstrate that 
the  
!AS ,F  and  !α S ,F  coefficients are EXACTLY THE SAME.  

(h)  Normal coordinates are the best way to deal with initial conditions.  The general solution is:  

 

ξS (t)
ξF (t)
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That last form is ideal for initial conditions specified at t = 0.  Use it and part (e) to fit the B’s and C’s that match 
these initial conditions: at t = 0,  φ1 = φ2 = 2  while  !φ1 = 0 and  !φ2 = 1.  That gives you ξS(t) and ξF(t) … how do 
you use those functions to build your final solutions φ1(t) and φ2(t)?

Problem 2 : The Degenerate Modes of a Suspended Plate	 Checkpoints2

A thin, flat, homogeneous plate has mass M and lies in the x1-x2 plane with its 
center at the origin.  The plate’s sides have length 2A in the x2 direction and 2B 
in the x1 direction.  The plate is suspended from a fixed support by four springs 
of equal spring-constant k at the four corners of the plate.  The top figure 
shows the equilibrium configuration of this system. 

We have three degrees of freedom:
1. vertical motion, with the center of the plate moving along ± x̂3
2. tipping motion around the x̂1  axis, described by the angle θ
3. tipping motion around the x̂2  axis, described by the angle φ

Our generalized coordinates for this problem are thus  
!q = {x3, θ, φ} ; 

the angles remain small to ensure a linear system.  The plate’s moments of 
inertia are I1 = ⅓ MA2 around x̂1  and I2 = ⅓ MB2 around x̂2 . 

(a)  The M and K matrices and resulting eigenfrequencies are given in the 
checkpoint.  Come back later and derive them for practice, but for now just 
grab them.  The interesting feature of this problem is that two of the modes are 
degenerate, meaning two of the eigenfrequencies are the same.  

(b)  To find out how this plate likes to move, you must find the eigenvector  
!a  

for each mode.  Because of the degeneracy, you must make some arbitrary 
choice when building  

!a  for the two modes with the same frequency.  Use this 
common tactic: set one of the free components of  

!a  to zero for one of the 
degenerate modes, then figure out the other  

!a  using orthogonality.  Finally, normalize your eigenvectors. 

(c)  Find the system’s normal coordinates and write down their solutions for the case when the system starts at 
rest from positions  

!q(t = 0) = {x30 ,θ0 ,φ0} .  Note: you will see that in the case of this plate, normal coordinates 

are no easier to work with than the regular ones.  But practice is good. ☺ 

(d)  Finally, add to the plate a thin bar of mass m and length 2A situated (at equilibrium) along the x2-axis.  
(The bar’s moment of inertia around x̂1  is I1 = ⅓ mA2 and it is thin enough to have zero moment of inertia 
around x̂2 .)   Find the new eigenfrequencies of the system and show that the degeneracy of the system is gone.
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ξS (t ) = M x3 (t ) = M x30 cos(ω St )

ξF1 (t ) =
1
3
MA2 θ(t ) = 1

3
MA2 θ0 cos(ω Ft )

ξF2 (t ) =
1
3
MB2 φ(t ) = 1

3
MB2 φ0 cos(ω Ft )

 (d) ωF1 =  2
3k

M + m
,

others unchanged


