
Phys 326 Discussion 7 – Captured Paths and Transfer Orbits
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• Centrifugal force & PE :    
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• Path Equation :  u(φ) ≡ 1/ r(φ)   →    ′′u + u = − µF(1 /u)
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• Ellipse / Hyperbola with (r,φ) centered on a focal point :     1
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Also, the r(φ) formula in the last line immediately gives                              and                          .

Problem 1 : A Captured Path 	 Checkpoints for 1 & 2

In lecture we introduced the capture cross-section, σ = π bmax
2 : particles fired with a given initial velocity  

!v0
at a potential well are “captured” by it when their impact parameter b is below some value bmax.  “Captured”
means the particle cannot return to r = ∞ (cannot “escape” the potential well).  Many of you wondered what 
exactly happens to such a captured particle … good question!  Let’s find out, using the attractive “Death Star” 
force from lecture, F = −k / r3 , which corresponds to the potential U = −k / 2r2 .  We will send in particles with 
initial velocity v0, impact parameter b, and mass m << MDeathStar.   

(a)  Plot U*(r).  You will see that it can take two different shapes, depending on the relative size of the force 
constant k and L2/m for the incoming particle.  Using the fact that L is related to b, find the capture condition on 
b, and from that get σ = π bmax

2 .

(b)  Use the path equation to determine the path r(φ) for captured particles of mass m.  You will quickly find it 
convenient to define the symbol α ≡ (mk / L2 ) −1  . 

(c)  Sketch the path!  Important:  !φ = L / µr2  tells us that the angle is constantly increasing with time; it will 
keep growing until r reaches some limit like r = ∞ or r = 0.  What shape is the path?  Are the particles actually 
“captured” by the Death Star? 

(d)  Calculate the speed components  vr = !r  and  vφ = r
!φ  as functions of φ.  What happens to them in the 

limit φ → ∞?   (We are using φ as a substitute for time; we could solve for time, but it is messy.)  Think of one 
or two reasons why the limit you obtained will not occur in practice, despite your calculation. 

1  (a) σ = π (k / mv0
2 )    (b)  r(φ) = α b / sinh(αφ)   (c)  path = inward spiral  (d) vr = −v0 cosh(αφ) ,  vφ = (v0 /α )sinh(αφ)

2  (d) Hint: the transfer time is half the period of the transfer orbit.  Answer: T =  π (R1 + R3 )
3 / (8GM

⊙
)  = 2.7 years.  

    (e) (v1, v2L, v2R, v3) = (30, 39, 7.4, 13) km/sec.  (f) It doesn’t matter what radial speed you use: if you have to stop the angular 
          velocity v1 at L and create angular velocity v3 at R, your total Δv will be at least v1 + v3 = 43 km/s > Hohmann’s 15 km/s !
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Problem 2 : Hohmann Transfer to Jupiter	 Checkpoints on previous page

The idea of Hohmann Transfer Orbits dates from 1925 when Walter Hohmann found the most cost-effective 
procedure for transferring a spacecraft from one circular orbit to another circular orbit in the same plane.  

(a)  Here are the steps involved; draw them as your read so you can visualize the procedure.

1. Draw the Sun, and draw two circular orbits around it.  Assign the starting orbit a radius R1 and assign the 
ending orbit a radius R3 > R1.  We will imagine that orbit 1 is the Earth’s orbit, while orbit 3 is that of 
Jupiter.  Our goal is to get a spaceship from Earth-orbit to Jupiter-orbit (so it can take pretty pictures ☺︎).

2. Hohmann’s technique to get a ship from orbit 1 to orbit 3 is to put the ship into a temporary transfer orbit, 
which we call orbit 2.  Draw in this transfer orbit as a dashed line using Hohmann’s specification: the 
transfer orbit is an ellipse that is tangential with both orbit 1 and orbit 3.   

3. The ship will briefly fire its rockets at two points: at the point L=Launch where we switch the ship from 
orbit 1 to orbit 2, and at the point R=Rendezvous where switch from orbit 2 to orbit 3.  Label these two 
points L and R on your drawing.  (They are the points where the circular orbits touch the transfer orbit.) 

Does everything make sense?  If your drawing is correct you will see that the transfer orbit has perihelion 
distance R1 and aphelion distance R3.   Also, you can see that the two rocket firings will apply impulses that are 
tangential to the ship’s current orbit.  This avoidance of any radial velocity changes is at the heart of the cost-
saving of the Hohmann procedure.  It is not the fastest way to get from one orbit to another; rather, it uses the 
least amount of fuel, and getting anything up into space is extremely expensive!

(b) We need very little information to get all the numbers for this problem.  We need the distance from the Sun 
to Jupiter, which is 5.2 A.U., where an A.U. (Astronomical Unit) is the Sun-Earth distance.  Almost everything 
else can be obtained from well-known quantities about the Earth’s orbit (well-known because we live here. ☺) 
For example, the nasty constants G,  M⊙ , and R1 = 1 A.U. will appear frequently in our calculations, but in 
convenient combinations.  Specifically, ( GM⊙ / 1A.U. ) turns out to be a very pretty quantity: 9×108 (m/s)2. 
Show that, since the Earth’s orbit is nearly circular, the velocity of the Earth around the Sun is the square root of 
this pretty quantity:  v1 = GM⊙ / R1 = 30 km/s .  

(c)  Another convenient combination of G,  M⊙ , and R1 = 1 A.U. can be obtained from the 1-year period of the
Earth around the Sun.  Show that  GM⊙ / R1

3 = 2π / year .  Combined with (b), we also get 30 km/s = 2π AU/yr.

(d)  Now calculate the total time T it will take to get from Launch to Rendezvous.  A hint is in the footnote. 

(e)  Calculate the four speeds v1, v2L, v2R, and v3 involved in the story.  In case the notation is unclear: v1 is the 
ship’s speed in orbit 1; v2L is the speed right after the ship fires its rockets at point L (which puts it onto orbit 2); 
v2R is the speed on orbit 2 right before the rockets are fired for a second time, at point R; and v3 is the ship’s final 
speed in orbit 3. 

(f)  Does Hohmann Transfer really optimize cost by minimizing the amount of fuel burned?  As we showed in 
325, the amount of fuel burned is proportional to the sum of velocity changes Δv .  From part (e), you found 

ΔvL + ΔvR  ≈ 15 km/s for Hohmann, so experiment and see if you can do better!  Try a direct radial trajectory:  
fire your rockets at L=Launch to give the ship zero angular speed and a radial speed that will reach Jupiter’s 
orbit in the same time T = 2.7 years that Hohmann requires.  Once you reach Jupiter’s orbit, remember that you 
have another velocity change to make: you must stop your radial velocity and impart an angular velocity 
matching Jupiter’s orbit.  See how much “cost” ΔvL + ΔvR  your plan requires!


