
Phys 326 Discussion 8 – Rutherford Scattering & Repulsive Kepler Trajectories

Our Kepler formula-set is now updated to include two things: (1) the possibility of repulsive 1/r2 forces with 
negative force-constants γ  (2) relations needed for scattering problems, namely formulae for the scattering 
angle θ and impact parameter b for unbounded Kepler orbits as well as general cross-section formulae. 
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• Centrifugal force & PE :    
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• Conics : With (r,φ) centered on a focal point and E ≣ Ellipse, H ≣ Hyperbola 
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	 Unbounded orbits:   scatteringangle  θ = π − 2α  with tanα =
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Problem 1 : The Rutherford Cross Section	

We have all the tools we need to derive the most famous and most commonly-used cross section in the world: 
the Rutherford XSec dσ / dΩ  for the non-relativistic scattering of two charged particles.  Ernest Rutherford 
used this calculation to analyze the 1911 scattering experiment of Geiger and Marsden and deduce that the 
positive charge in the atom is not smeared uniformly within the atom but concentrated in a tiny volume.  This 
was the discovery of the atomic nucleus.  On to our derivation!  We give the beam particle a charge q and the 
target particle a charge Q; the force between them is then F = kqQ / r2 .   We also assume that the target 
particle’s mass is so much greater than the beam particle’s mass ( M ≫ m ) that the target can be treated as fixed.  

You have all the tools you need to show that this famous cross-section is dσ
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If you need them, steps are in the footnote on the next page.  Also you will find these trig relations helpful:
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	 Steps for Problem 1 1
Problem 2 : Geiger and Marsden 1911 	 Checkpoints 2

Geiger and Marsden’s historic experiment scattered α particles of kinetic energy E = 7.7 MeV from a gold foil.  
How close did their beam get to the target gold nuclei?  

(a)  Obtain a formula for rmin = distance of closest approach as a function of a and b for a repulsive 1/r2 force.

(b)  The closest approach depends on impact parameter.  For what impact parameter will you get as close as 
possible to the target?

(c)  Calculate the smallest-possible distance of closest approach, rmin for b = 0, and figure out its value for the 
Geiger and Marsden experiment. You will need to know that Z = 2 for α particles (which are just 4He nuclei) 
and Z = 79 for gold to obtain the beam and target charges, and in case you forget, k = 9E9  in SI units. ☺ 
☞ ZERO-over-ZERO Problem?  If you just set b = 0 in your rmin formula from (a), you will get 0/0.  You 
have not made an error … can you figure out how to handle that little 0/0 problem?  If not, see the footnote!  

☞ What does your value tell you?  When Rutherford analyzed Geiger and Marsden’s measurement of the 
scattering cross section versus scattering angle θ, he found that it exactly matched the formula you derived in 
problem 1.  That formula assumes the electric field is kQ/r2 at every point in space that the beam can reach, i.e. 
that the target’s charge Q is completely concentrated inside a volume that the beam has not penetrated.  Do you 
see the point?  If the charge Q was spread out over a broad region of space, the E field would be kQenc(r)/r2 
where Qenc(r) is the charge enclosed out to radius r.  Well, you just calculated that the 1911 experiment was able 
to get within 60 fm of the target’s center, and they saw no deviation from the Rutherford formula for scattering 
from a point charge. They knew that the radius of the atom was around 10–10 m which is way bigger than 60 fm! 

Problem 3 : Scattering Relations for the Far-Side Hyperbola Branch 	 Encouragement 3

In lecture, we related the standard parameters of scattering experiments, namely scattering angle θ & impact 
parameter b,  to the geometric parameters of hyperbolae, namely semi-major axis a & semi-minor axis b.  Our 
derivation was nearly all geometry … but we only inspected the near branch of a hyperbola.  We must ensure 
that our relations also apply to the far branch of a hyperbola, since that’s the branch we get when repulsive 1/r2 
forces are at play (as in the Rutherford cross section!).  Set up an (x,y) coordinate system, place a focal point at 
(x,y) = (c,0) as usual, then draw in a far branch hyperbola relative to this focal point.  As we did in lecture, 
identify the incoming beam, the target, and the scattered particle trajectory on your sketch.  Finally, use conic-
section relations to show that the scattering angle is still θ = π – 2α where tan α = b / a and the impact parameter 
b is the same as the semi-minor axis b  → exactly the same as for the near-branch hyperbola you obtain from 
attractive 1/r2 forces. 

1  Here are the steps to take in your derivation. Step 1: strategize (A) Looking at our dσ / dΩ  formula, we see that we need to relate 
impact parameter b to scattering angle θ →  that’s our main goal.  (B) Looking at the answer we’re trying to obtain, we see that the 
given parameters — the “things we know” — are going to be E, θ, and of course kQq = |γ| .  So our “strategy box” looks like this: 
we know E, θ, |γ| and we want b.  Step 2: get b in terms of θ  We have a 1/r2 force here, so we are in the world of Kepler orbits →  
go through that rich section of the formula sheet looking for the relations you need to determine what you want = b in terms of what 
you know = E, θ, |γ|.  Result: b = ( γ / 2E) cot(θ / 2) .  Step 3: get dσ/dΩ  Now it’s just plug-and-play using our differential cross 
section formula and the trig relations provided.   

2  (a) rmin =
b2 / a

−1 + 1 + b2 / a2
 (b) impact parameter b = 0 gives closest possible distance-of-approach  (c)  29.5 fm.  To deal with the 

zero/zero problem, first approximate your rmin formula for very small b, then take the limit b→ 0 ; you will get rmin = 2a = γ / E .
3  It’s all sketching and geometry, enjoy!  And you are a wonderful person! 


