Phys 326 Discussion 15 – Stress and Strain in a Solid

The stress tensor Σ (or σ_{ij} when index notation is in use) describes the <u>surface forces per unit area</u> on a differential element of area $d\vec{A}$ within a material. $d\vec{A}$ always points <u>outward</u> from the element experiencing the force. All this is summarized by the somewhat wordy equation

$$\vec{F}_{\text{acting on}}^{\text{surface}} = \Sigma \ d\vec{A}_{\text{OUT}} \qquad \dots \text{ or in index notation: } F_i^{\text{surface}} = \sigma_{ij} dA_j$$

The strain tensor **E** (or ε_{ij} in index notation) describes the <u>fractional deformation</u> of a material under stress. When stress is applied to a tiny element of material at location \vec{r} , it moves from its original position \vec{r} to a slightly shifted position $\vec{r}' = \vec{r} + \vec{u}(\vec{r},t)$. The function $\vec{u}(\vec{r},t)$ is called the **displacement field** of the material.

<u>no strain</u>: element at $\vec{r} \rightarrow$ <u>under strain</u>: element moves to $\vec{r}' = \vec{r} + \vec{u}(\vec{r},t)$

We assuming all displacements are small (as they generally are in a solid). The strain tensor is directly related to the displacement field : it is a symmetrized version of the **derivative matrix D** :

$$\mathbf{D}_{ij} \equiv \frac{\partial u_i}{\partial r_j} = \begin{pmatrix} \partial_x u_x & \partial_y u_x & \partial_z u_x \\ \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots \end{pmatrix} \longrightarrow \mathbf{E} \equiv \frac{\mathbf{D} + \mathbf{D}^T}{2} = \begin{pmatrix} \partial_x u_x & \frac{1}{2} (\partial_y u_x + \partial_x u_y) & \vdots \\ \frac{1}{2} (\partial_x u_y + \partial_y u_x) & \partial_y u_y & \vdots \\ \vdots & \vdots & \vdots & \vdots \end{pmatrix}$$

(Here I'm using the familiar shorthand $\partial_j u_i \equiv \partial u_i / \partial r_j$.) As we learned, "stress / strain = elastic modulus", for various types of stress, strain and modulus (BM=Bulk, YM=Young's, SM=Shear Modulus). The formal relation between the stress and strain tensors is the **generalized Hooke's Law**. Here it is in " $F = k\Delta x$ " and " $\Delta x = F/k$ " forms, where I am making an analogy between the familiar $F, k, \Delta x$ for a spring and our new Σ , M, E quantities.

•
$$\Sigma = (\alpha - \beta)e \mathbf{1} + \beta \mathbf{E}$$

• $\mathbf{E} = \frac{1}{3\alpha\beta} \Big[3\alpha \ \Sigma - (\alpha - \beta)(\operatorname{tr} \Sigma) \mathbf{1} \Big]$ where $\alpha = 3BM$
where $\beta = 2SM$ and $YM = \frac{3\alpha\beta}{2\alpha + \beta} = \frac{9BM \cdot SM}{3BM + SM}$
 $e = \frac{1}{3}\operatorname{tr} \mathbf{E}$

Problem 1 : An Example Stress Tensor

It is found that the stress tensor in a continuous medium has the form given at right : (Ignore the units \odot .) Find the surface force \vec{F}^{surf} on a small area *dA* of the surface $x^2 + y^2 + 2z^2 = 4$ at the point (x, y, z) = (1, 1, 1).

Problem 2 : Longitudinal Waves on a String

A taut, massive string can support longitudinal waves as well as transverse ones. Suppose we have a string of cross-sectional area A, made of a material with Young's Modulus YM, and lying along the x axis. The displacement field for this string is $\vec{u}(\vec{r},t) = u_x(x,t)\hat{x}$ since this problem is entirely 1-dimensional.

(a) Consider a very short piece of string of length *l*. We defined Young's Modulus as follows:

¹
$$\vec{F} = dA(2\hat{x} - \hat{y} - \hat{z}) / \sqrt{6}$$

² (b) $\frac{\partial^2 u_x}{\partial t^2} = \frac{YM}{\rho} \frac{\partial^2 u_x}{\partial x^2}$ (c) $c = \sqrt{YM / \rho}$

Checkpoints 1

$$= \left(\begin{array}{ccc} xz & z^2 & 0 \\ z^2 & 0 & -y \\ 0 & -y & 0 \end{array} \right)$$

$$YM = \frac{\text{tension-stress}}{\text{tension-strain}}$$
 where $\text{tension-stress} = \frac{T}{A_{\perp}}$ and $\text{tension-strain} = \frac{\Delta l}{l}$

Using <u>primes</u> to denote conditions under strain, as in $\vec{r} \rightarrow \vec{r}' = \vec{r} + \vec{u}(\vec{r},t)$, the tension-strain can be written $\Delta l/l = (l'-l)/l$. Considering what happens to the ends of the string under strain, show that the tension is related to Young's Modulus by $T = A(YM)\partial u/\partial x$.

(b) Now consider the <u>forces</u> on the ends of the little piece of string. Using F = ma, find the equation of motion for the longitudinal disturbance $u_x(x,t)$. Hint: to help you find the differential equation you seek, change notation a bit \rightarrow change the string segment's length from *l* to *dx* and put its center at some position *x*.

(c) What is the speed of longitudinal wave propagation along this string?

Problem 3 : Young's Modulus Relation

Checkpoints ³

We didn't impose any conditions on the cross-sectional area A of the string in problem 2 so the string can be a solid block. Suppose the tension in the block of material in the x-direction only (as for the string) and constant : $\vec{T}(\vec{r}) = T \hat{x}$.

(a) Write down the stress tensor $\Sigma = \sigma_{ij}$ for this block under constant tension. Then use the " $\Delta x = F/k$ " form of generalized Hooke's Law (the second bullet on the previous page) to write down the strain tensor $\mathbf{E} = \varepsilon_{ij}$ in terms of the material constants α and β and the <u>one</u> non-zero stress-tensor element σ_{ij} you obtained.

(b) Using the tension-stress & tension-strain analysis you already performed in problem 2, convince yourself that Young's Modulus is YM = one-element-of- σ / one-element-of- ε . (which elements?)

(c) Combine these results to derive the expression on the previous page for YM in terms of α and β .

³ (a)
$$\mathbf{E} = \frac{\sigma_{11}}{3\alpha\beta} \begin{pmatrix} 2\alpha + \beta & 0 & 0 \\ 0 & \beta - \alpha & 0 \\ 0 & 0 & \beta - \alpha \end{pmatrix}$$
 (b) $\mathbf{Y}\mathbf{M} = \frac{\sigma_{11}}{\varepsilon_{11}}$