
Physics 326 – Homework #3	              hard deadline extended to WEDNESDAY, 10:00 am

Problem 0 : Not for points on this homework, but please do not forget to work through Discussion 3 Problem 2 
(which very few got to), which covers degenerate modes.

Problem 1 : Drag Coupling 	

In homework 2, we solved coupled oscillators with a damping force 
involved.  We used normal coordinates to solve it: that decoupled 
the equations of motion, reducing the problem to the familiar 
damped oscillator with 1 degree of freedom from PHYS 325 / MATH 285.  Let’s try a different method: this 
time we will use matrix notation to solve a damped oscillator in all n of its dimensions at once. 

The two carts in the figure have equal masses m.  They are joined by identical but separate springs of force 
constant k to separate walls.  Cart 2 rides in cart 1 as shows, and cart 1 is filled with molasses, whose viscous 
drag supplies the coupling between the two carts.  The drag force has magnitude βmv where v is the relative 
velocity of the two carts.

(a)  Write down the equations of motion of the two carts using as coordinates x1 and x2, the displacements of the 
carts to the right of their equilibrium positions.  Show that the EOM can be written in matrix form as 

 1
!""x + βD !"x +ω0

2 1 !x = 0 , where  
!x  is the column vector made up of x1 and x2, ω0 ≡ k / m , 1 is the unit matrix, 

and D is a certain 2×2 square matrix for you to determine.  

(b)  The next step is to “guess the solution form”.  Let’s try normal mode form, but with a slight variation.  
Normal mode form means a solution where all the coordinates are oscillating at the same frequency and the 
same phase.  This system has damping, however, so its oscillations will decay with time.  That suggests a 
solution form  

!x(t) = !a e "ωt  where we hypothesize a common frequency  !ω  that is complex instead of the usual 
iω.  Assuming that the drag force is weak ( β <ω0 ), show that you do get two solutions of this form with 

 !ω = iω 0  or  !ω = −β + i ω 0
2 − β 2 .  HINT: The determinant factorizes, stare at it until you see it!

(c)  Describe the corresponding motions.  Explain why one of these modes is damped but the other is not. 

Problem 2 : 3 Beads and Springs on a Ring	  Qual Problem

Consider a frictionless rigid horizontal hoop of radius R.  Onto this hoop we thread three beads with masses 
2m, m, and m; between the beads we thread three identical springs on the hoop, each with force constant k.  

(a)  Solve for the three normal frequencies. 

(b)  Find the three normal modes, describe them with sketches, and express them in normalized form, i.e. so that 
their amplitude vectors obey the orthonormality relation âm ân = âm

T M ân = δmn .  Take R = 1 for simplicity.

Problem 3 : Transverse Modes	

Two particles, of masses 2m and m, are 
secured to a light string of total length 4d that 
is stretched to tension T0 between two fixed 
supports.  As shown in the figure, the masses 
are not evenly spaced along the string.  The 
masses undergo small transverse oscillations, 



where their transverse displacements from equilibrium, y1 and y2, are kept to very small values compared with 
the length-scale d of the string.  

(a)  Find the normal frequencies of transverse oscillation for this system.  You will find it useful throughout this 
problem to define the constant α ≡ T0 / dm( )  → using it will greatly simplify your expressions!   

(b)  Write down the general solution for y1(t) and y2(t).  

(c)  Is the general motion you calculated in (b) periodic?  Explain why or why not, and if it is, give the period of 
the general motion.  

(d)  Normalize the eigenvectors for the fast and slow modes to obtain an orthonormal basis âF , âS{ } .

(e)  Find the normal coordinates ξF  and ξS  in terms of the generalized coordinates y1 and y2, and determine the 
matrices R and R–1 that relate them via  

!
ξ = R !y  and  

!y = R−1
!
ξ .

(f)  Explicitly transform the mass matrix M and spring matrix K to ξ–space (i.e., calculate Mξ and Kξ) using the 
matrix transformation formula Mξ = R−1( )TM R−1( )  derived in class, and verify that they are diagonal.  

(You do not have to rederive the diagonal form again, just this once. ☺︎) 

Problem 4 : Driven 3m2s System	 Qual Problem

Three identical blocks of mass m = 1 are placed in a line on a frictionless horizontal table and connected by 
identical springs of spring-constant k = 1.  With the +x direction pointing to the right, we number the blocks as 
1,2,3 from left to right, and define x1, x2, and x3 to be their x-positions relative to equilibrium.  The blocks are 
initially at rest at x1 = x2 = x3 = 0.  At time t = 0, an external driving force  

!
F = f cos(ωt) x̂  is applied to block 1.  

Calculate x3(t) = the motion of block 3 for times t ≥ 0.  Tactics: You have the same basic choice to make in this 
driven-oscillator problem as with a damped-oscillator problem → do you switch to normal coordinates or not?  
It is a tradeoff.  Here is a little summary of what will happen if you use ξ or not: 

	 Step	  	 	 	 	 Not using ξ	 	 Using ξ
	 (1) Find homogeneous solution 	 usual procedure, same in both methods
	 (2) Find particular solution	 	 easy	 	 	 transformation algebra : go to ξ-space
	 (3) Apply initial conditions	 	 horrible algebra	 easy
	 (4) → final solution for x3(t)	 	 trivial	 	 	 transformation algebra : return to x-space

Of course the best thing is to try both methods and see which you prefer. :-)  

Problem 5 : 4-Atom Ring Molecule	 Qual Problem

To study the vibrational spectrum of a ring molecule like benzene, one can reasonably approximate the 
molecule’s atoms / sub-molecules as beads placed on a ring with springs between them.  Let’s try a 4-element 
ring molecule:  consider four identical beads of mass m placed on a ring with springs of equal strength k running 
along the ring between the beads.  Using as generalized coordinates the positions x1, x2, x3, x4 of the 4 beads 
measured along the ring relative to equilibrium, determine the four normal modes of the system.  Provide a 
small sketch of each mode so you can visualize it, and make sure your four modes are orthogonal to each other.

Hint: the 4x4 matrix Mω 2 −K  can be hugely simplified by introducing a variable α ≡ (mω2 / k – 2).  


