
Physics 326 – Homework #5	 due Friday, 1 pm

Problem 1 : The Foci of an Ellipse ➔ We Will Need This Soon ! 	

The focal points of an ellipse are defined in various ways.  Here is a really nice definition: if you place two pins 
in a piece of cardboard and tie the ends of a fixed-length string to the pins, then stretch the string by pushing it 
outward with a pen, the shape you draw by moving the pen around to all points you can reach without breaking 
the string will be an ellipse.  The pins are the two focal points and the spacing between them is usually labelled 
2c  (i.e. each pin is a distance c from the origin at the center of the ellipse), the length of the string is 2a = the 
length of the major axis.  Your  tasks:

(a) Show that if you set up a Cartesian coordinate system with the midpoint between the pins as the origin, the 

curve your pen traces out is indeed the most familiar equation for an ellipse: x
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= 1, with c2 = a2 − b2 .

(b) Show that if you set up a polar coordinate system with the focal point on the +x side as the origin, then the 

curve your pen traces out can be written as follows:  1
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.  We will encounter this form 

very soon and you must recognize it!  FYI: If we define the eccentricity e via c = ae , we get the more common 

form 1
r
=
a
b2
1+ ecosθ( )  for an ellipse. 

(c) In (b), I explicitly used θ as the angular variable instead of the usual φ to stress that this form only applies if 
you place the origin at one of the focal points, NOT at the center of the ellipse!  To stress this unfamiliar 
arrangement, write down the equation for the ellipse using polar coordinates (r, φ) that are centered on the 
origin — just transform your result from part (a) — and compare your expression to the focal-point centered 
form (1 / r) = (a / b2 ) 1+ ecosθ( )  ➔ they are not the same! 

Problem 2 : Adding an External Force 	

Although the main topic of this section is the motion of two particles subject to no external forces, the key 
strategy of decomposing the Lagrangian into two independent pieces,  L = LCM + LREL , extends easily to more 
general situations.  To illustrate this, consider the following: two masses m1 and m2 move in a uniform 
gravitation field  

!g = −g ẑ  and interact via a potential energy U(r).  

(a)  Show that the Lagrangian   L (
!r1,
!r2,
!"r1,
!"r2 )  for the two masses can be rewritten so that it decomposes in the 

form   L(
!
R, !r ,
!"R, !"r ) = LCM (

!
R,
!"R) + LREL (

!r , !"r )  where  
!
R  is the CM position and  

!r ≡ !r1 −
!r2  is the relative position 

of the two masses.  You may use Cartesian components (X,Y,Z) for  
!
R , or you can cast your expression in

coordinate-free form by using the vector  
!g  and a suitable dot-product.  Warning: Be careful not to confuse the 

symbols  
!"r  and  !r  → the first means  d

!r / dt  while the second means  d
!r / dt , and these are not the same thing!  

Switching from “r-dot” to “v” can help avoid this notational pitfall:  
!"r = v  while  !r = vr  → clearly different. 

(b)  Write down Lagrange’s equations for the three CM coordinates X ,Y, Z and describe the motion of the CM. 
Write down the Lagrange equations for the relative coordinates and show that the motion for  

!r  is the same as 
that of a single particle of mass μ (the reduced mass), with position  

!r  and potential energy U(r).  Hint: Pick a 
coordinate system for the components of  

!r  (Cartesian or spherical would be best), find the EOM for each 



coordinate, then show that the 3 EOMs correspond to the expression “  −
!
∇U(r) = µ!""r ” … which is exactly 

“  
!
F = m!a” for a particle of mass μ in a potential U(r).  

(c)  Two particles of masses m1 and m2 are joined by a massless spring of unstretched length L and force 
constant k.  Initially, m2 is resting on a table and m1 is held vertically above it at height L.  At time t = 0, m1 is 
tossed vertically upward with velocity v0.  Defining z = 0 to be the table and +z to point upward, find the 
positions z1(t) and z2(t) of the two masses at any subsequent time t, before either mass returns to the table, and 
describe the motion.  (Assume v0 is small enough that m1 & m2 don’t collide.)  Strategy: The coordinate 
switching we do in this problem is conceptually identical to what we did with normal coordinates.  The problem 
& initial conditions are given in z1, z2-space ... but z, Z-space is much better for obtaining a solution as it 
decouples the EOMs.  Our strategy is thus “switch to z, Z-space … solve and apply initial conditions … switch 
back to z1, z2-space for final answer”.  This time, no matrices are required. ☺︎  

Problem 3 : Circular Orbits in Different Central Potentials 	

The behavior of a pair of objects interacting via a central force is very different for different forms of that 
central force.  For example, we will soon prove that gravity (or any other attractive 1/r potential) produces 
closed orbits of elliptical shape, which includes circles as one possibility.  Oddly enough, a spring force between 
the two masses (or any other attractive r2 potential) also produces ellipses, but this is not true for other forms of 
the central potential.  Let’s make this completely clear by exploring different forms for U(r). 

For all of the following parts, consider a particle of reduced mass μ orbiting in a central force with U = krn  
where kn > 0.  (Note: n will sometimes be negative in the parts below; in those cases, the kn > 0 condition 
means that k will be negative too.)  You can use without proof the formulae we derived in discussion / lecture:  

	 ● Coordinates  :     
!r ≡ !r1 −

!r2 ,      M
!
R = m1

!r1 +m2
!r2      …      

 

!r1 =
!
R +

m2

M
!r ,      

 

!r2 =
!
R −

m1

M
!r

	 ● L-Equation : 
 
!φ = L

µr2
	 	 	 ● E-Equation :   

 
E = 1

2
µ !r2 +U + L2

2µr2

	 ● Reduced Mass :  µ =
m1m2

M
	 	 ● Force Equation :  µ!!r = F(r) + Fcf (r) 	

	 ● Effective Potential : U* ≡U +Ucf 		 ● Centrifugal force & PE :    
 

!
Fcf =

L2

µr3
r̂ ,    Ucf =

L2

2µr2

(a)  Explain what the condition kn > 0  tells us about the force. 

(b)  Sketch the effective potential energy U*(r) (written Ueff  in Taylor’s textbook) for these four cases: 

n = 2, −1, −2, −3 .  Treat the angular momentum L as a known, fixed constant.

(c)  Find the radius r0 at which the particle (with given angular momentum L) can orbit at a fixed radius in a 
central potential  U = krn .  In which of the cases n = 2, −1, −2, −3  that you sketched in (b) is such an orbit 
possible at all?  (Rephrased: in which cases can the particle remain at some r0 indefinitely. 

(d)  Assuming that a fixed-radius = circular orbit is possible, for what values of n is this orbit stable?  Do your 
sketches confirm this conclusion? 

(e)  For the stable case, show that the period of small oscillations about the circular orbit is τOSC = τORB / n + 2 , 
where τORB  is the particle’s orbital period = the time it takes to complete one circular orbit. 

(f)  Finally, explore your result from (e) in these three ways:



	 (f1)  For what type of force (gravity, spring-force, …) is τOSC  equal to τORB ? 

	 (f2)  Argue that if n + 2  is a rational number, these perturbed, small-oscillation orbits are closed
	 (f3)  Sketch the orbits for the cases that n = 2, –1, and 7 (yes, seven ☺)


