
Physics 326 – Homework #7	 due FRIDAY, 1 pm
For today’s homework, the Formula Collection you may use without proof is the entire set of formulae 
provided before the first problem of Discussion 7.  That includes the two equations at the end for r0 and e in 
terms of rmin and rmax since you derived them in Homework 6.  Everything else, you have to derive here.  As in 
the last homework, use this Earth Data: radius of the earth is R⊕  = 6.4 × 106 m; all appearances of the earth’s 
mass M⊕  will be in the combination GM⊕  which is equal to gR⊕

2  ; use that and the familiar value g = 9.8 m/s2.  

Problem 1 : Pluto to Saturn 	

(a)  Before we even introduce this problem, calculate a super-useful general formula for the velocity vapse of an 
object at an apsidal point of a closed Kepler orbit (i.e. bound by a central force 

!
F = − r̂ γ / r2 ): obtain vapse in 

terms of the corresponding apsidal distance rapse, the parameter r0 of the orbit, the force constant γ, and the 
reduced mass μ of the system.  Once you have this formula, you may use it in all subsequent problems. 

Now on with the story!  A research satellite is in Pluto’s orbit and needs to be transferred to Saturn’s orbit.  
The distance from the Sun to Pluto is about 40 A.U. while the distance from the Sun to Saturn is about 10 A.U.  
To save precious funds, the satellite controllers accomplish the switch using a Hohmann transfer.  If you 
didn’t get to the Hohmann transfer problem in Discussion 7, please have a look at it before you embark on this 
problem. 

(b)  Calculate the thrust factors λ ≡ vafter / vbefore  at the launch point from Pluto (λL) and at the rendezvous point 
with Saturn (λR).  NOTE for this and future problems: Whenever you have a planet orbiting around a star, or a 
satellite around a planet, the orbiting mass m is so much smaller than the central mass that you may always 
assume that μ ≈ m (unless otherwise specified, of course).

(c)  Show that the satellite’s final speed is twice its initial speed. 

(d)  Calculate the total travel time from launch at Pluto to rendezvous at Saturn. 

Problem 2 : GSO = Geo-Synchronous Orbit

An earth satellite is in a circular orbit 250 km above the Earth’s surface.  Using the most fuel-efficient method 
available, NASA controllers fire the satellite’s thrusters once in order to transfer it to an elliptical 
geosynchronous orbit (GSO) = an orbit whose period matches that of the Earth’s rotation.  The period of this 
orbit is thus 24 hours.1  

(a)  Calculate the velocity change, Δv, that is imparted to the satellite to achieve the desired orbit.  Remember to 
include both the magnitude and sign of Δv.  

(b)  Calculate the apogee distance of the geosynchronous orbit.  (There’s a decent chance you already calculated 
it in part (a); if so, emblazon the result with a nice box and an arrow so the grader can find your work. ☺)  

1 Actually, satellites in GSO, such as many communications and TV satellites, have an orbit of 23 hours 56 minutes = 1 sidereal day.  
This is the period of the Earth’s orbit relative to the fixed stars, which provide a fixed inertial reference frame.  24 hours is the period 
of a solar day = the time it takes for the sun to return to the same position in the sky.  Since the Earth orbits around the sun, these two 
periods are not exactly the same, but to simplify your calculator work, just take 24 hours for the period of a satellite in GSO. 



Problem 3 : Escape! 

A spaceship is “parked” in an elliptic orbit around the Earth.  The ship’s crew have a long journey ahead of 
them and they must first escape the Earth’s gravitational field.  

(a)  Calculate the escape velocity ve of the spacecraft as a function of its distance r from the center of the Earth.  
In case the term is unfamiliar, the escape velocity is the minimum velocity the craft would need at its starting 
point in order to be able to make it to r = ∞ with its engines turned off. 

(b)  The crew wishes to escape from their elliptical orbit using the most fuel-efficient method possible.  As we 
learned in our Phys 325 study of rocket motion, the amount of fuel used is proportional to the change Δv in the 
rocket’s speed.  The crew will apply one impulse from their engines to achieve escape velocity; the question is: 
at what point on their elliptical parking orbit should they fire their engines to achieve optimal fuel efficiency?  
Hint: the optimal point is at one of the apses, but you must show that this is so, and you must determine which 
apse (perigee or apogee) is best.  This problem is not as trivial as it might seem: in its parked orbit, the ship has 
the highest velocity at perigee, but it also has the highest escape velocity there since perigee puts the ship deeper 
into the Earth’s potential well than at any other point on its orbit.  There are thus two competing effects at work, 
making for an interesting optimization problem. 

Problem 4 : A Satellite Experiences a Drag Force 

A satellite of mass m moves in the gravitational field of the Earth (mass  M ≫ m ), but it is also subject to a 
linear drag force  

!
Fdrag = −2βm !v  where β is the usual positive drag constant.  

(a)  Show that the satellite’s equations of motion can be reduced to the form:
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where L0 is a constant that will be assumed to be positive.  (If it’s negative, the only thing impacted is the sign 
of  !φ , i.e. whether the satellite moves in the +φ or –φ direction.) 

(b)  Suppose that the drag force is small — i.e. that β is much smaller than all other quantities of the same units 
— and that the satellite begins in a circular orbit at t = 0.  By neglecting the terms in  !r  and  !!r , find an 
approximate solution for r(t)  and  !φ(t) .  Your solution should show that small resistance causes the orbit’s 
radius to contract slowly; however, what happens to the speed of the satellite as time increases? 

(c)  In part (b) we neglected terms in  !r  and  !!r .  This approximation is certainly justified for times near t = 0 
since the orbit is initially circular, and a circular orbit has both  !r = 0  and  !!r = 0 .  Given the solution you 
obtained, can our neglect of these terms also be justified for times t > 0? 

Problem 5 : A Wee Bit of Scattering	

Let’s finish up with a simple problem about the most basic elements of scattering experiments: cross sections 
and luminosity.  These will be discussed in Tuesday’s lecture; as this is a short problem, probably best to just 
wait until Tuesday.  If you prefer, you can read Taylor sections 14.1–14.3 to locate the relevant formulae.

The cross section for scattering a certain nuclear particle from a copper nucleus is 2.0 barns.  A barn is a unit of 
area that is universally used for describing atomic & subatomic cross-sections; its value is 1 barn = 10–28 m2.  
If 109 beam particles are fired through a copper foil of thickness 10 μm, how many of them are scattered?  You 
will need these values: the density of copper is 8.9 g/cm3 and the atomic mass of copper is 63.5.  Recall: the 
atomic mass gives the mass of an element in amu = atomic mass units where 1 amu = 1.66 × 10–27 kg ≈ the 
mass of a proton.  (The mass of a proton is 1.67 × 10–27 kg; the strict definition of an amu is the mass of the 12C 
nucleus divided by 12, which is not exactly the same due to the binding energy of 12C.) 


