
Physics 326 – Homework #10 	 due Friday, 1 pm

All solutions must clearly show the steps and/or reasoning you used to arrive at your result. You will lose points 
for poorly written solutions or incorrect reasoning.  Answers given without explanation will not be graded: 
“No Work = No Points”.  However you may always use any relation on the 1DMath, 3DMath or exam formula 
sheets or derived in lecture / discussion.  Write your NAME and DISCUSSION SECTION on your solutions.

Here’s a summary of all our formulae so far related to the inertia tensor: 
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!
Ω* = I3

I1

−1
⎛
⎝⎜

⎞
⎠⎟
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You also proved several extremely useful symmetry theorems in Discussion 9; those are at your disposal too!

Problem 1 : Practice with Euler’s Equations	

Note: Please use Euler’s three equations to solve these, even if you could solve them some other way (e.g. by 
directly using the “master” equation on which they are based,  

!
τ = d

!
L / dt ).  The entire point of this problem is 

to simply become familiar with the structure of these equations.  They can all be solved by taking linear 
combinations of the equations (or using just one of them) to construct the quantity you are studying in each part.

(a)  A rigid body is rotating freely, subject to zero torque.  Use Euler’s equations to prove that the magnitude of 
the angular momentum is constant.  Hint: you can just show L2 is constant, and L2 has a very nice form in the 
body-system used for Euler’s equations!  Write down its derivative, dL2/dt, then manipulate Euler’s equations 
(linear combination!) to build that dL2/dt expression … it comes out really nicely. ☺

(b)  In much the same way, show that the kinetic energy of rotation,  Trot =
1
2

!
L ⋅ !ω , is constant.

(c)  Consider a lamina rotating freely (no torques) about a point O in the lamina.  Use Euler’s equations to show 
that the component of  

!
ω  in the plane of the lamina has constant magnitude.  

(i.e. If you choose ê3 as perpendicular to the lamina, you must show that the time derivative of ω1
2 +ω2

2  is zero.)  
Hint: A pure lamina is completely flat : it has no size in the direction perpendicular to its surface.  This causes an 
additional simplification in the inertia tensor beyond certain off-diagonal elements going to zero → it imposes a 
strict relationship between the diagonal elements, i.e., one of them can be written in terms of the other two.  
You’ll need this relationship; it’s easy to figure out. 

(d)  Consider an axisymmetric object rotating freely (i.e. no torques) about a point O on its axis of symmetry.  
What do Euler’s equations tell us about the time-dependence of the component of  

!
ω  along the object’s axis of 

symmetry? 



Problem 2 : Angles for a Free Symmetric Top

In our study of a torque-free symmetric top, we found the exceedingly important relation that the vectors 

 
!
L,  !ω ,  and ê3  always remain coplanar.  (Recall that ê3  is the axis of symmetry of the top.)  This coplanarity 

provides a crucial link between the body frame, where ê3  is fixed, and the lab frame, where  
!
L  is fixed.  In 

addition, the angles between these three vectors  remain constant throughout the object’s motion.  

Just FYI: for basically all “free top” problems, the quantities you must be given to make the system solvable are
	 • the top’s principal moments Ii, or enough information about the top to calculate them
	 • some information about  

!
ω , e.g. the components ω3 and ω12 = ω1ê1 +ω2ê2  (which are constants of

               motion for an axisymmetric top), the magnitude ω and some angle, or some initial value  
!
ω t=0

(a)  Calculate the angle α between the vectors  
!
L  and ê3  in terms of I1, I3,ω12 ,  and/or ω 3 .

(b)  Do the same for the angle β between the vectors  
!
ω  and ê3 .

(c)  I throw a thin, flat, uniform circular disc into the air so that it spins with angular velocity ω about an axis 
that makes an angle β with the symmetry axis of the disc.  What is the precession (rotation) frequency of the 
disc’s symmetry axis around the angular momentum vector, as seen by me (lab frame)?  Amazingly, the answer 
depends only on ω andsinβ . 

Problem 3 : The Space Station from 2001

An axially symmetric space station (e.g. a torus, as depicted in the movie “2001”, or a cylinder) is floating in 
free space.  It has rockets mounted symmetrically on opposite sides.  The rockets are continuously firing so as to 
exert a constant torque τ around the station’s axis of symmetry, ê3 .  

(a)  As it happens, the station’s rotation is not aligned with its symmetry axis → at time t = 0, the rotation vector 
is  
!
ω t=0 =ω20ê2 +ω 30ê3 , where ω20 and ω30 are constants.  Solve Euler’s equations exactly for  

!
ω (t) in the body 

frame using this initial condition.   If you need it, a hint is provided after the last problem about how to solve the 
coupled differential equations you will obtain.  

(b)  Describe the motion of the station in words, as seen by an inertial observer floating outside the station.  

Problem 4 : Adding a Mountain to a Spherical Planet	

Imagine that this world is a perfectly rigid uniform sphere and is spinning about its usual axis at its usual rate.  
A huge mountain of mass 10–8 earth masses is now added at colatitude 60°, where “colatitude” means “angle 
with respect to the north pole”.  (The Earth-geography latitude of this mountain would thus be 30° N.)   The 
mountain ruins the earth’s perfect symmetry (how sad) and so causes the Earth to begin free precession, like any 
other axisymmetric body.  Assuming that no torques affect the Earth’s motion, how long will it take the North 
Pole (defined as the northern end of the diameter along  

!
ω ) to move 60 km along the Earth’s surface from its 

current position?  Take the Earth’s radius to be 6400 km.  Note: the input values you’ve been given have been 
specified to at most two significant digits, so it makes no sense to obtain your answer to any greater level of 
precision than that. ☺ 



________________________________________________________________________________
Math Hint for Problem 3(a) : The Space Station

You will encounter coupled equations of this type: 
 

!f1(t) = −K(t) f2 (t)
!f2 (t) =   K(t) f1(t)

  .  

If that coefficient K(t) was a constant, K, you would immediately know the form of the functions: one of them is 
a sine and one of them is a cosine.  They may have some overall phase shift or some amplitudes of common 
magnitude to satisfy the boundary conditions, e.g. −6sin(ωt − 45º )  and 6cos(ωt − 45º )  … but whatever the 
details, you know f1 and f2 are sinusoidal functions of time that are 90° out of phase with each other.  There is 
no other pair of functions that will give you “derivative of f1 is –blah f2 and derivative of f2 is +blah f1”.   The 
only unfamiliar aspect of problem 3(a) is that blah is a function of time, not a constant.  Well you can still solve 
the equations by guessing well.  Will a sine and a cosine still work?  Absolutely : even when blah is time-
dependent, there is still no other pair of functions that gives you “derivative of f1 is –blah f2 and derivative of f2 
is +blah f1”.  You are accustomed to the solution forms Asin(ωt + φ)  and Acos(ωt + φ)… you just have to 
rethink them a little bit.  You need some additional time-dependence somewhere, to accommodate that K(t) 
coefficient ... where shall we put it?  How about in the argument of the sinusoidal functions? ➔ ωt is a bit too 
simple, that’s all, so try replacing it with some unknown function of time, g(t) : try Asin[g(t)]  instead of 
Asin[ωt] .  Plug forms like that for  f1 and f2 into your differential equations and you will quickly see what g(t) 
has to be. 


