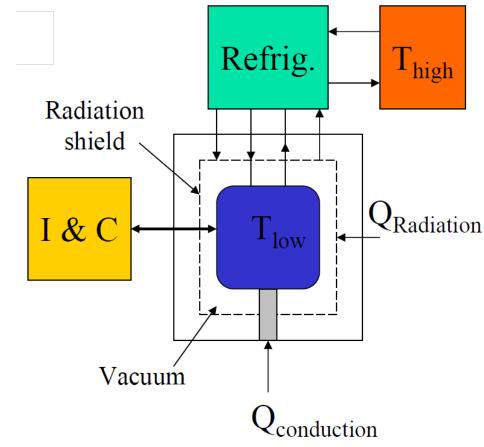
PHY524 Cryogenics-1

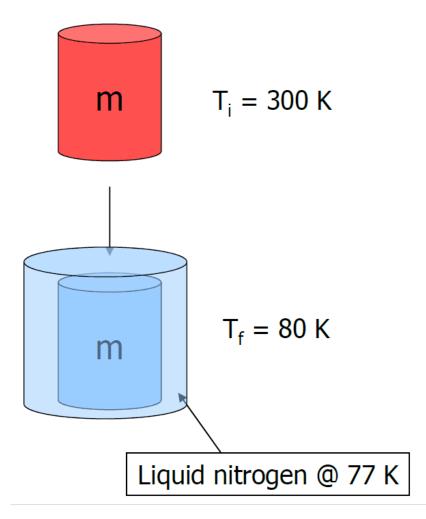

Cryogenic system; thermal insulation; thermal conduction 11/6/2025

Material adopted from

- 1. https://www.stonybrook.edu/commcms/case/courses/PHY695
- 2. http://cryocourse2016.aalto.fi/#program
- 3. http://cryocourse2011.grenoble.cnrs.fr/spip.php%3Frubrique13.html
- 4. USPAS | Materials | by Year | 21onlineSBU | Cryogenic Engineering
- 5. USPAS | Materials | by Year | 10MIT | Cryo Engineering

A cryogenic system has the following components:

- Low temperature environment
- Source of refrigeration
- Heat exchange medium
- Thermal insulation
- Structural support
- Instrumentation and Control



All these components need to operate in convert, reliably and safely

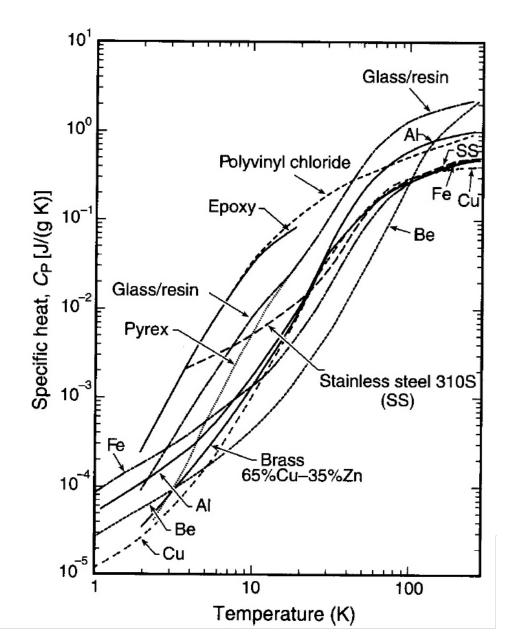
Purpose of a cryogenic system: to cool things!

Ex: use liquid nitrogen to cool blocks of metal, plastic, etc...

Cryogenics involves cooling things to low temperature. Therefore one needs to understand the process.

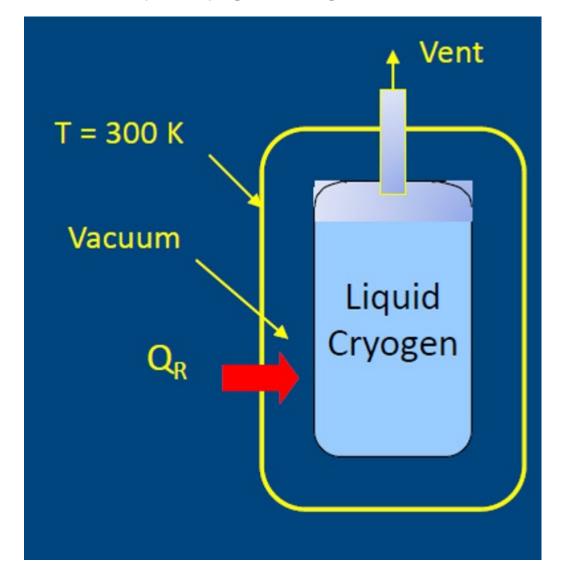
If the mass and type of the object and its material are known, then the heat content at the designated temperatures can be calculated by integrating 1st Law.

$$dQ = Tds = dE + pdv$$


 The heat removed from the component is equal to its change of internal energy,

$$\Delta E = m \left(\int_{T_f}^{T_i} C dT \right)$$

Specific Heat of Material


General characteristics:

- Specific heat decreases by ~ 10x between 300 K and LN₂ temperature (77 K)
- Decreases by factor of ~
 1000x between RT and 4 K
- Temperature dependence
 - C ~ constant near RT
 - C ~ Tⁿ, n ~ 3 for T < 100 K
 - C ~ T for metals at T < 1 K

Insulation for the low-temperature environment

EX: A liquid cryogen storage tank

- High performance insulation system all involve some level of vacuum.
 - How low vacuum is needed?
- Even for perfect vacuum, thermal radiation can still contribute significantly to total heat leak.
 - Q ~ T^4 so process is dominated by high temperature surfaces (usually 300 K)
- Materials used for insulation:
 - To reduce radiant heat, one can put materials between two surfaces at different temperatures
 - However, adding materials affects conduction heat transfer
 - Insulating material may significantly contribute to total cost of system

Cryogen Safety: volume change for cryogenic fluids

Recall Volume Changes for Cryogenic Fluids from Normal Boiling Point to 300 K & 1 Bar

Fluid	(Volume of gas at 1 Bar, 300 K) / (Volume of liquid at normal boiling point)			
Propane	323			
Ethane	446			
Xenon	556			
Krypton	711			
Methane	660			
Argon	861			
Oxygen	879			
Nitrogen	720			
Neon	1488			
Hydrogen (Para)	875			
Helium	783			

Dewar Explosion

State Fire Marshal's Alert February 22, 2006

University Campus Liquid Nitrogen Cylinder Explosion

Incident Specifics

Figure 1 -Effect of Explosion on Dewar Cylinder Compared to unaffected cylinder

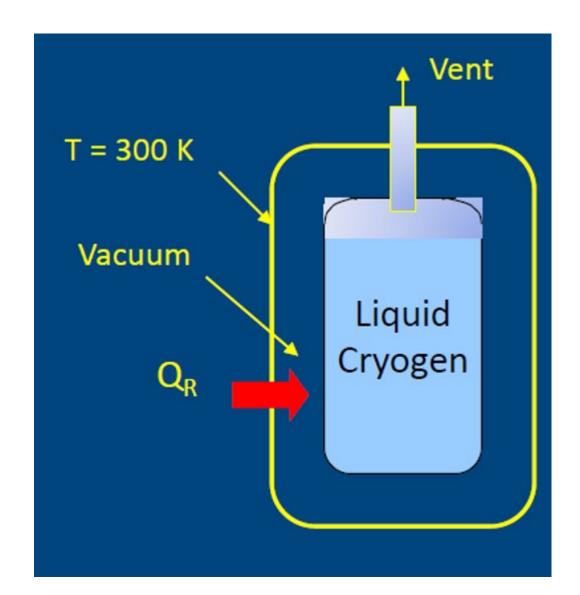


Figure 2 - Hallway Outside Laboratory Showing Explosion Damage

Figure 3 - Inside the Laboratory after Explosion

Thermal Isolation: Vacuum

- Vacuum Vessel: The outermost cryostat component that interfaces with the surrounding systems
- Insulating vacuum is generally in the 10⁻⁴ to 10⁻⁶ torr range; the lower the better.
- The design for internal and external pressure are addressed by the ASME Boiler and Pressure Vessel Code, Section VIII, Division 1 and 2 and specific workplace codes

Vacuum Vessel

Needs to:

- Contains the insulating vacuum to withstand the inward force from atmospheric pressure.
 Failure → implosion
- 2. Serves as a pressure containment vessel in the event of a failure in an internal cryogen line. Failure → explosion

	Carbon steel	Stainless steel	Aluminum
Pros	Inexpensive Readily available Weldable	Mostly non-magnetic Weldable Good fracture toughness	Inexpensive Readily available Non-magnetic Weldable Good fracture toughness Light weight
Cons	Magnetic Low fracture toughness Rust preventative required	Expensive	Difficult to implement metal seals Difficult to use threated holes
Alloys	SA 516	304, 304L	6061, 5083

Thermal Insulation: Solid Foam

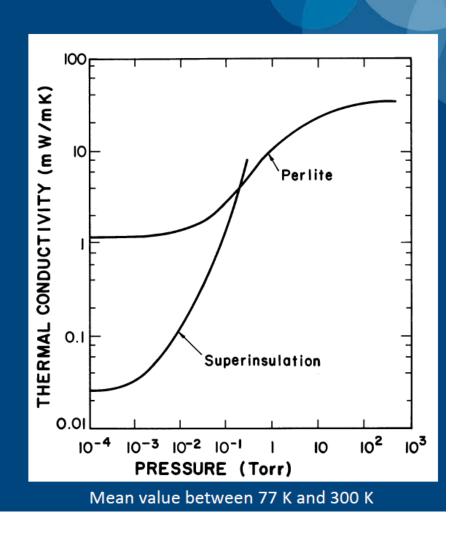
- Solid foam insulations not used very often in cryogenics because they have relatively poor performance.
- Since these materials are gas filled, their thermal conductivity is typically > k_{gas} ~ 20 mW/m*K.

Example: Consider a Polystyrene LN₂ vessel with 20 mm wall and 1 m² surface area.

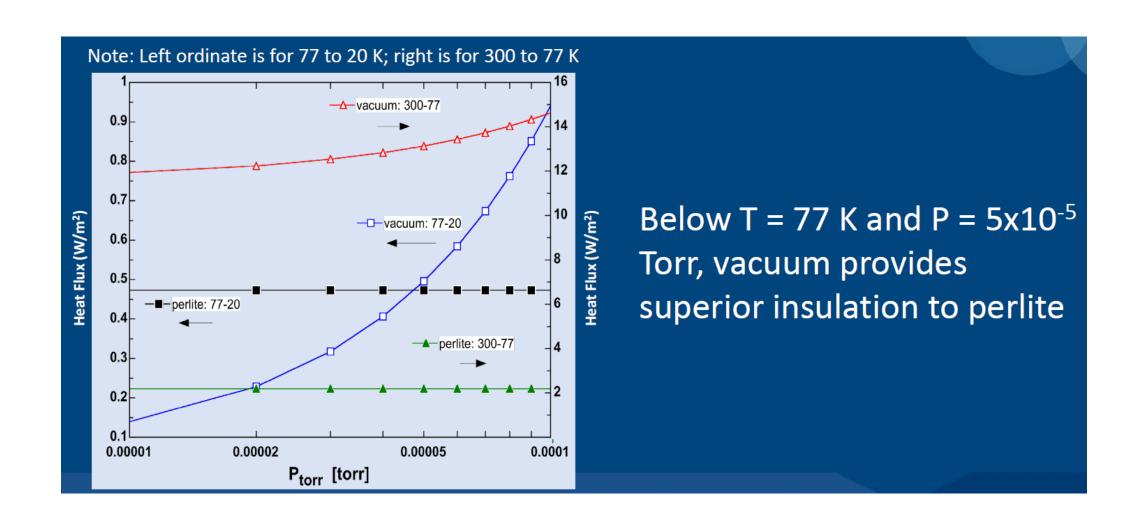
$$Q = k \cdot A \cdot \frac{\Delta T}{L} = 33 \cdot 1 \cdot \frac{(300 - 77)}{0.02} = 368 W$$

$$h_{fg}(LN_2) = 200 \frac{kJ}{kg} \qquad \rho(LN_2) = 800 \frac{kg}{m^3}$$

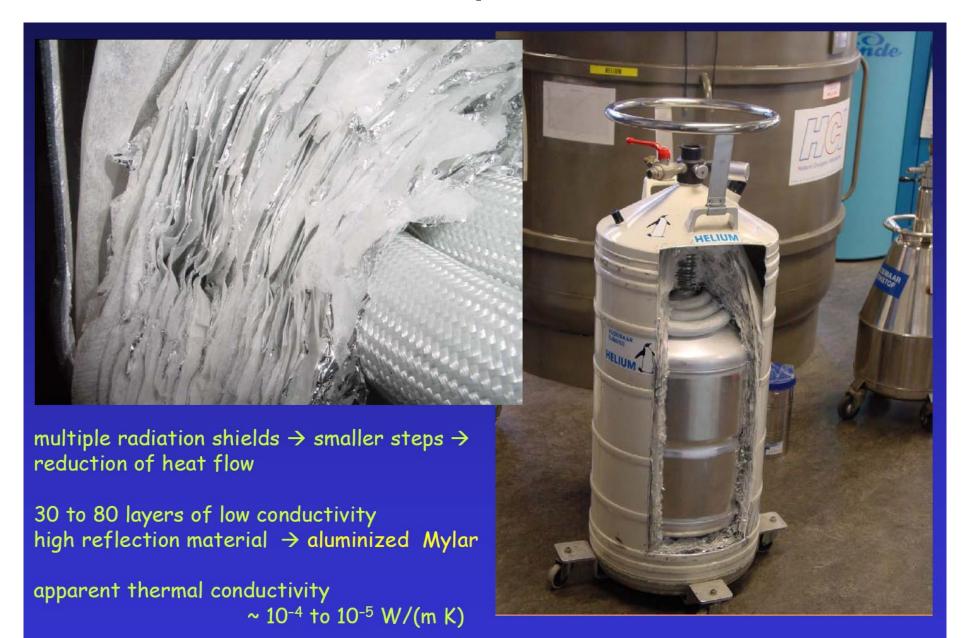
$$\frac{dm}{dt} = \frac{Q}{h_{fg}} = 1.84 \frac{gr}{s} = 8.3 \frac{l}{hr}$$


Table 7.12. Apparent thermal conductivity of foam insulations for boundary temperatures of 300 K (80°F) and 77 K (-139°F)

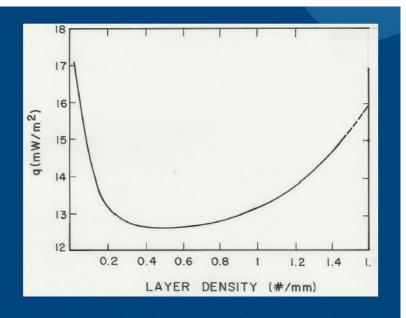
	Density		Thermal Conductivity		
Foam	kg/m ³	lb _m /ft ³	mW/m-K	Btu/hr-ft-°F	
Polyurethane	11	0.70	33	0.019	
Polystyrene	39	2.4	33	0.019	
	46	2.9	26	0.015	
Rubber	80	5.0	36	0.021	
Silica	160	10.0	55	0.032	
Glass	140	8.7	35	0.020	


Thermal Insulation: Powder

Powder Insulations


- Powder insulations were developed for ease of installation in less stringent operating conditions.
- Perlite is a natural product that is cheap and easily installed.
- Glass micro-spheres 100 to 1000 μm in diameter are also good candidates for this application.
- Vacuum requirements for these materials are less critical. Good performance at p $^{\sim}$ 0.1 Torr compared to 10⁻⁴ Torr for Super Insulation (discussed next).
- Powder insulations is mostly used for less stringent cryogenic vessels such as LN₂ or LNG containers.

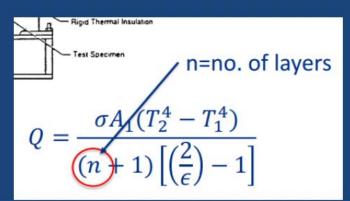
Which is the better insulation?



Radiation Shields - Superinsulation

Multilayer Insulation (MLI)

- MLI (also referred to as super insulation) is a material developed to approximate a large number of thermally insulated shields.
- MLI consists of aluminum (5 to 10 nm thick) on mylar film with low density fibrous material between layers.
- To be effective MLI must operate in vacuum
- Heat transfer is by a combination of conduction and radiation.
- MLI must be carefully installed covering all surfaces with parallel layers, not wrapped since conduction along layer will produce a thermal short.
- Engineering applications must include factor of safety compared to ideal data.



Radiation heat load for different densities between 4.2 K and 77 K

Recommended values: q_r (77 K, 4 K) ~ 50 to 100 mW/m² q_r (300 K, 77 K) ~ 1 to 1.5 W/m²

Superinsulation

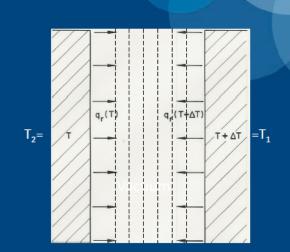
- Multi-layer insulation (MLI)
 - Material: Alternate layers of aluminized mylar foil + polymer spacer
 - ➤ No. of layers: usually 30-60 layers on a thermal shield at ~80 K and 10-15 layers on a lower temperature shield or cold mass; layer density is usually 50-60/inch
 - Vacuum: 1e10-4 torr or lower.
 - \triangleright Realistic heat load: \sim 1.5 W/m² at 80 K and \sim 0.15 W/m² at 4.5 K
- > Floating radiation shields

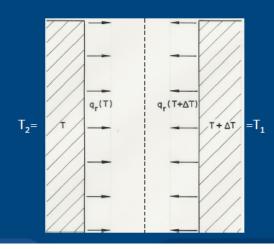
MLI: calculations

Multi-layers

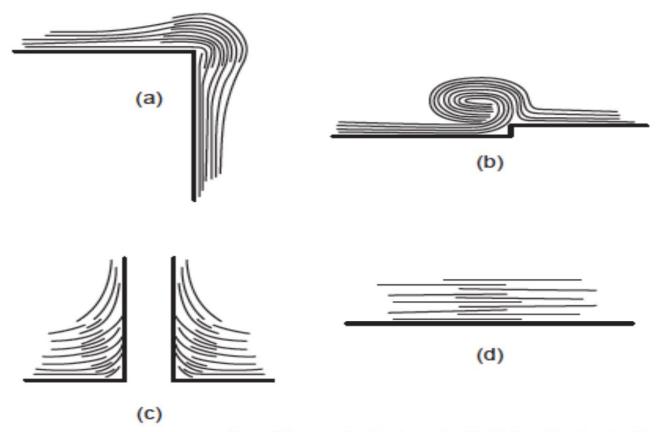
• Adding shielding between the radiant surfaces can significantly reduce the heat transfer. For n shields with emissivity ε , the heat exchange is:

 $q_r = \left(\frac{\varepsilon}{(n+1)(2-\varepsilon)}\right)\sigma(T_1^4 - T_2^4)$

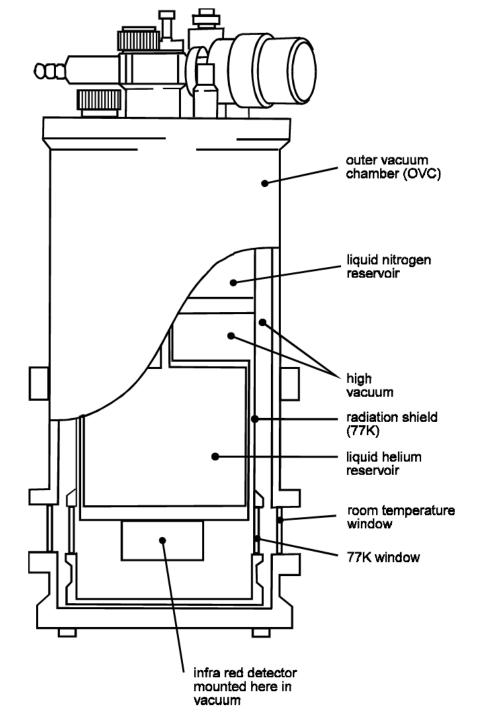

which for $\varepsilon \ll 1$, reduces the q_r by a factor of 1/n+1


• Note that the shield temperatures are not equally distributed because the heat exchange is not linear. Consider one shield and all emissivities = ϵ in steady state:

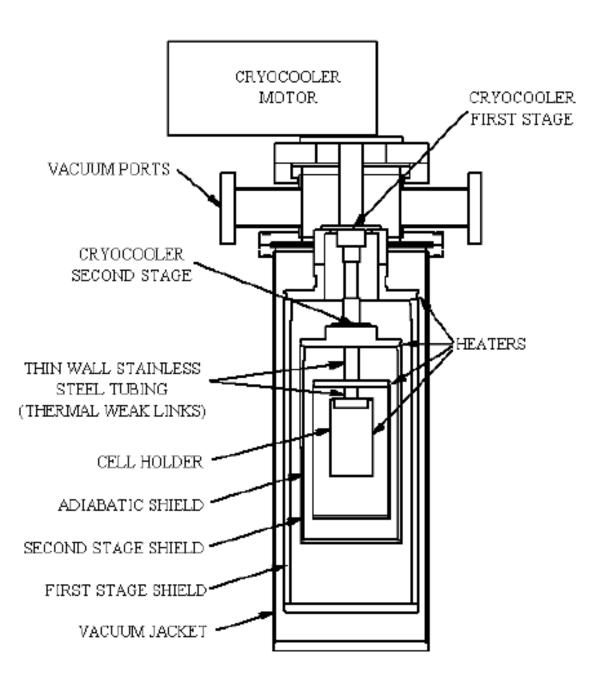
$$q_r(1,s) = \frac{\varepsilon}{2} \sigma \left(T_1^4 - T_s^4\right) = q_r(s,2) = \frac{\varepsilon}{2} \sigma \left(T_s^4 - T_2^4\right)$$


$$T_s = \left(\frac{T_1^4 + T_2^4}{2}\right)^{1/4}$$

~ 252 K for T₁ = 300 K and T₂ = 77 K



Proper MLI installation

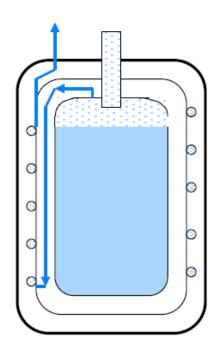

From "Cryogenic Engineering" in Wiley Mechanical Engineer's Handbook

Thermal Shield

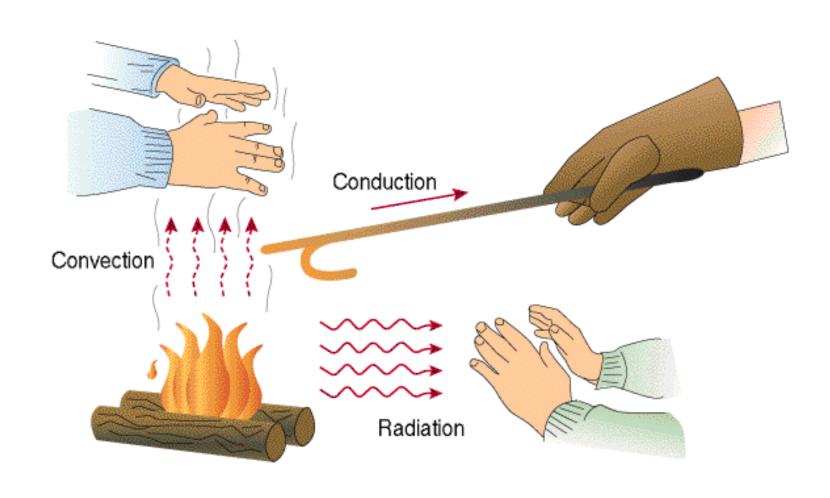
The purpose is to intercept radiative heat transfer between the room temperature vacuum vessel and the cold working load:

- High temperature shield: 50-80 K, low temperature shield: 5K, 20K
- Normally cooled by LN2, GHe, or cryocooler
- Serves as the heat sink for structural supports, current leads, power couplers, warm-to-cold transitions, etc.
- Surface is usually covered with multi-layer insulation (MLI) or aluminum foil

Thermal shield


A "passive" component in the system, so the cooldown time should be kept small

Use material with high thermal conductivity and low volumetric heat capacity


	Copper	Aluminum
Pros	Readily available Good thermal conductivity Readily soldered or brazed	Inexpensive Readily available Good thermal conductivity(*) Weldable Light weight
Cons	Expensive Heavy	(*)Thermal conductivity good, but not as good as copper Difficult to join to stainless steel
Alloys	OFHC, ETP, C101	1100, 6061

Cooling thermal shield with cold vapor

- There is significant thermodynamic advantage to actively cooling radiation shields in a cryogenic system. Examples:
 - LN₂ shield cooling in a cryostat
 - Vapor cooling in LHe storage vessels
 - Refrigerated shields
- Why would you want to do this?
 - Thermodynamic advantage of removing heat at higher temperature (COP)
 - Reduce boil-off of expensive fluid (LHe)
 - Can be done in conjunction with active cooling of other components (structural supports, current leads)

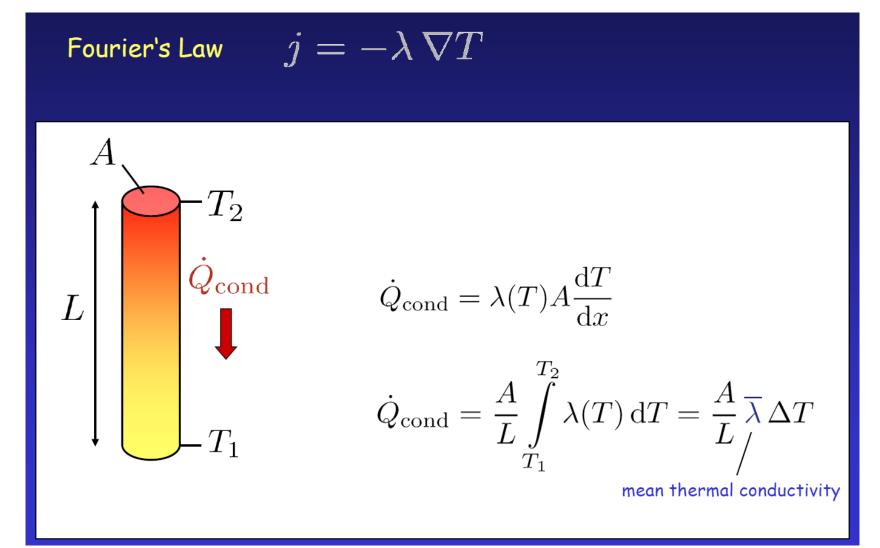
Three ways to transfer heat:

Heat Transfer

- Modes of heat transfer
 - Conduction (heat transported by solids and fluids at rest)
 - Fourier's law: Q = -k(T) * A * (dT/dx)
 - Convection (free and forced, pool boiling)
 - Newton's law: $Q = h_c * A * (T_{solid} T_{fluid})$
 - Radiation (electromagnetic waves)
 - >Stefan-Boltzmann law: $Q = \varepsilon \sigma_{SB} A * (T_1^4 T_2^4)$

Heat transfer

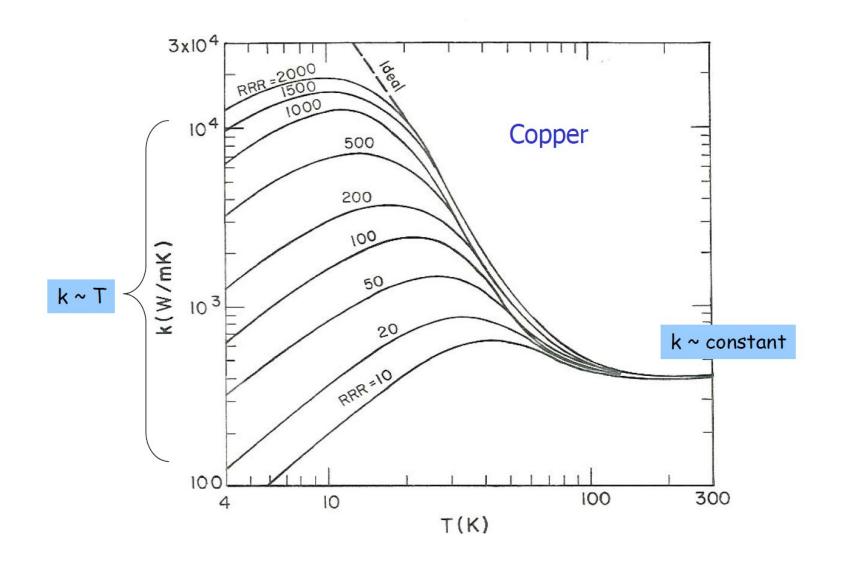
Thermal insulations for cryogenic systems


Increasing cost & complexity

Note better performance of evacuated Perlite over high vacuum between 300 K & 77 K

	Total Heat Flux (W/m²)				
Type of Insulation	300 K to 77 K	77 K to 20 K			
Polystyrene Foam (2 lb/ft³)	48.3	5.6			
Gas Filled Perlite powder (5 – 6 lb/ft³ filled with He)	184.3	21.8			
Perlite powder in vacuum (5 – 6 lb/ft³)	1.6	0.07			
High Vacuum (10 ⁻⁶ torr $\epsilon = 0.02$)	9	0.04			
Opacified powder (Cu flakes in Santocel)	0.3	-			
MLI	0.03	0.007			

From <u>Cryogenic Systems by R.</u> Barron (for rough estimates only)


Heat Conduction Through Solids

Note on this slide, the symbol for thermal conductivity

$$\lambda = k$$

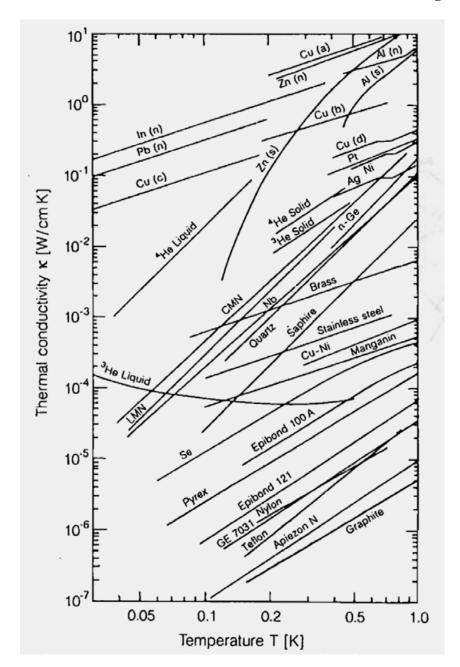
Thermal Conductivity of Pure Metals

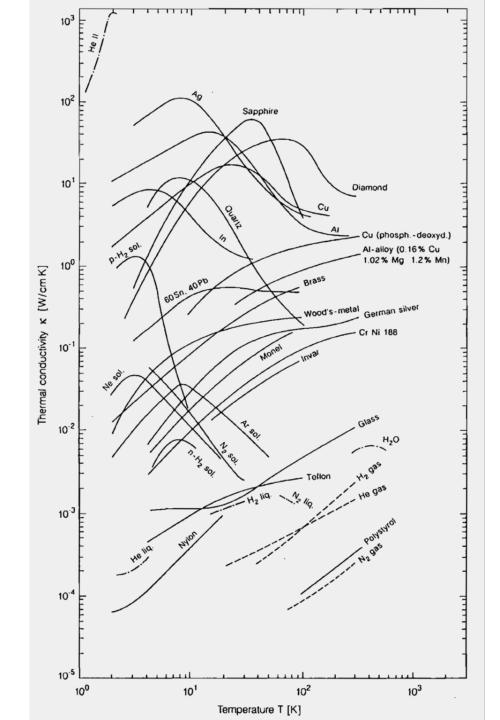
Electronic Thermal Conductivity (at low temperatures)

Free electron model:

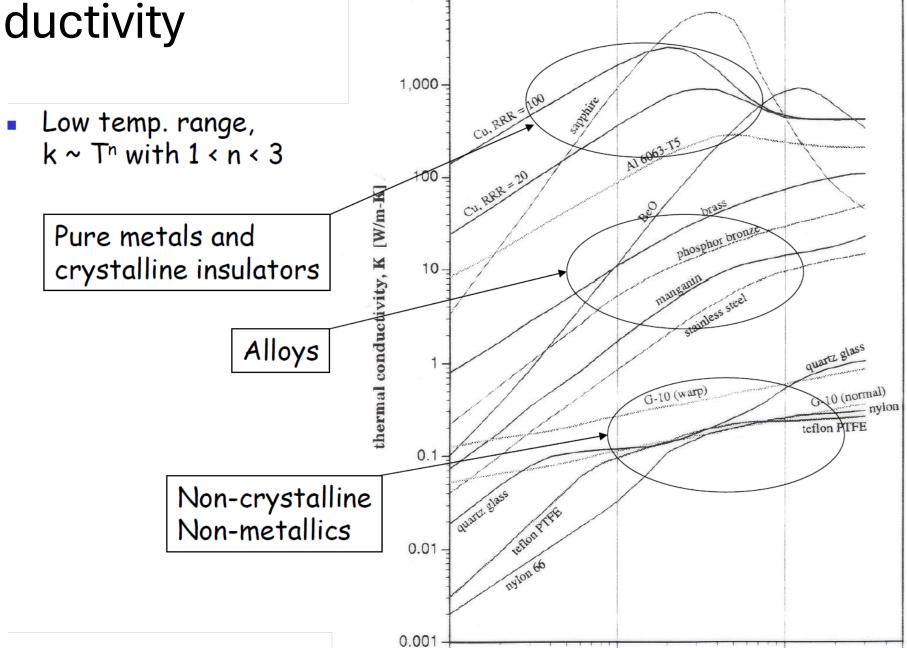
$$k = \frac{\pi^2 n k_B^2 T \tau}{3m_e}$$
 Recall: τ is scattering time = ℓ/v

- ~ constant at high temperature
- ~ T at low temperature
- Weidemann-Franz law (for free electron model)


$$\frac{k}{\sigma} = f(T) = \frac{\pi^2 k_B^2}{3e^2} T \equiv L_0 T$$
 L_0 = Lorentz number = 2.443 x 10⁻⁸ W\O/K²


 Note that no real material obeys the W-F law, although it is a good approximation at low T and near and above RT.

Thermal conduction by lattice vibration (phonons)


- Thermal conduction by lattice vibrations (phonons) is a significant contributor to overall heat conduction particularly in non-metals and alloys.
- Metals (Alloys): $k_{total} = k_{electrons} + k_{phonons}$ (Typ. 1 to 3 orders less than that of pure metals)
- Insulating crystals only have lattice contribution, which can be large for single crystals (e.g. Al₂O₃, Sapphire)
- Insulating polymers have very low thermal conductivity (Nylon, Teflon, Mylar, Kapton)
- Insulating composites have complex behavior depending on components

Thermal Conductivity

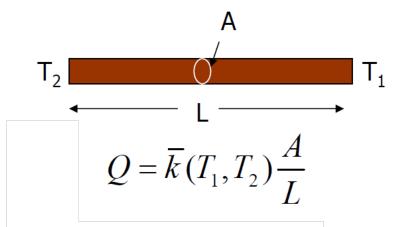
Thermal Conductivity

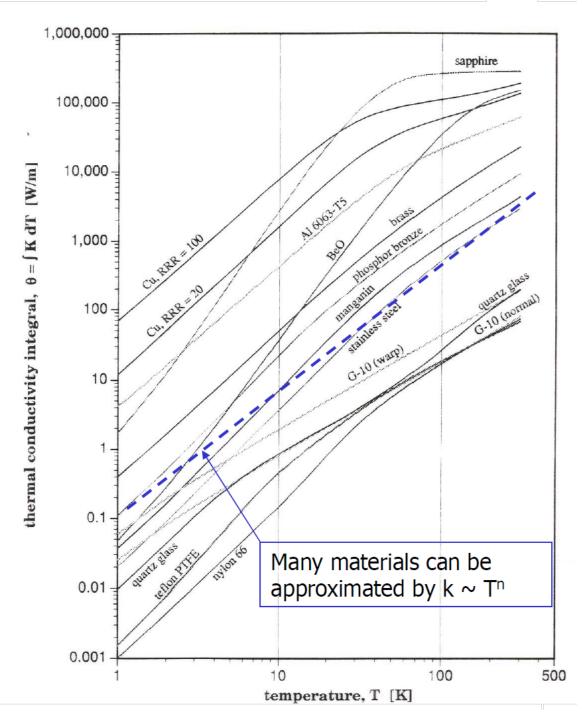
10

500

100

10,000


Thermal Conductivity Integrals


$$\overline{k}(T_1, T_2) = \int_{T_1}^{T_2} k(T) dT \quad \text{, [W/m]}$$

To use the graph

$$\overline{k}(T_1, T_2) = \overline{k}(0, T_2) - \overline{k}(0, T_1)$$

Heat conduction along a rod

Thermal Conductivity Integrals

$$\int_{4 \, \text{K}}^{T} \lambda \, dT \quad [\text{W/m}]$$

T(K)	Copper (wire)	Stainless Steel	inless Steel Glass	
6	800	0.63	0.211	0.113
10	3 320	2.93	0.681	0.44
20	14 000	16.3	2.0	1.64
50	50 800	135	8.46	7.16
77	68 600	317	17.5	13.0
100	80 200	528	29.2	18.7
140	97 600	939	54.2	28.7
200	122 000	1 660	103	44.2
300	162 000	3 060	199	70.2

$$\dot{Q}_{\text{cond}} = \frac{A}{L} \int_{T_1}^{T_2} \lambda(T) \, dT = \frac{A}{L} \left\{ \int_{4 \, \text{K}}^{T_2} \lambda(T) \, dT - \int_{4 \, \text{K}}^{T_1} \lambda(T) \, dT \right\}$$

Homework # 1:

Estimate the heat load due to conduction down the 3 SS tubes for our small diptick cryostat.

Thermal conductivity integral from 4.2 K

T (K)	6	8	10	15	20	60	80	300	
	W/cm								
Copper extra pure	166 382 636 1270 1790 2960 3090								
Copper cold worked	8.0	19.1	33.2	80.2	140	587	707	1620	
Silver	320	670	990	1610	1980	2570	2670	3570	
Alu. extra pure	73	168	280	600	907	1740	1840	2390	
Alu. Commercial	1.38	3.42	6.07	15.2	27.6	170	232	728	
Gold	41.0	93.0	149	274	364	612	682	1370	
Brass	0.053	0.129	0.229	0.594	1.12	10.4	17.7	172	
Lead normal	27.0	37.3	42.4	49.0	52.5	73.8	81.3	160	
Titanium	0.115	0.277	0.488	1.21	2.20	15.5	22.6	99.6	
Monel	0.0235	0.0605	0.112	0.315	0.618	5.23	8.24	52.5	
Stainless steel.	0.0063	0.0159	0.0293	0.0816	0.163	1.98	3.49	30.6	
Inconel							3.50	53.7	
	mW/cm								
Glass	2.11	4.43	6.81	13.1	20.0	115	194	1990	
Teflon	1.13	2.62	4.40	9.85	16.4	93.6	139	702	
Plexiglas	1.18	2.38	3.59	6.69	10.1	68.3	110	630	
Nylon	0.321	0.807	1.48	4.10	8.23	85.9	142	895	
Fiber glass epoxy	1.3	2.8	4.5	10	17	95	160	1250	