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Chapter 6 
 

Nucleon Structure and the Parton Model 
 
 
1.  Electron-Proton Elastic Scattering 
 
Electron scattering provides the most powerful tool for revealing the internal 
structure of the nucleon.  Much of the theoretical background for understanding the 
formulations in electron scattering has already been discussed in the last chapter.  
We begin by summarizing the relevant cross sections corresponding to different 
assumptions used in treating the e--p scattering. 
 
 
1)  Spin-0 Particle Scattering off a Static Point Spin-0 Particle with Charge e 
 
Recall Equation 5.45 
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 (6.1) 

 
for scattering of spin-0 particle off a spin-0 particle.  A static target is represented 
by M >> m, where m, M are the incident and target mass respectively. 
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Hence Equation 6.1 becomes 
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 (6.2) 

 
which is recognized as the Rutherford scattering. 
 
 
2)  Spin-½ Electron Scattering off a Static Spin-0 Point-Charge e 
 
We have already derived the cross section for this case.  The expression is given in 
Equation 5.79.  Namely, 
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This is the Mott scattering.  Note that at high energy v → 1, and the Mott scattering 
becomes 
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θ  (6.4) 

 
and scattering to 180o is forbidden.  This can be understood by noting that helicity 
of the electron is conserved at high energy.  The following illustration 
 
 Initial     Final 
 
 e-     e-
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shows that for electron scattered to 180o, the spin has to be flipped to conserve 
helicity.  Since a spin-0 target cannot flip the electron spin, such scattering is 
forbidden. 
 
 
3)  Spin-½ Electron Scattering off a Spin-0 Static Composite Particle 
 
The cross section in this case is worked out in Halzen and Martin, Ex. 8.1.  The 
result is  

 ( ) 2

Mott

d d F q
d d
σ σ⎛ ⎞ ⎛ ⎞=⎜ ⎟ ⎜ ⎟Ω Ω⎝ ⎠ ⎝ ⎠

 (6.5) 

 
where  ( )F q  is the Fourier transform of the charge distribution ρ(x): 
 
 ( ) ( )3 iq xF q d x x eρ= ∫ i  (6.6) 
 
 
4)  Spin-½ Electron Scattering off a Spin-0 Point-like Particle which can Recoil 
 
This case can be worked out by replacing the muonLµν  which spears in the e-µ- → e-µ- 
scattering by the ( ) ( )p p p p

µ ν
′+ + ′  corresponding to the spin-0 vertex.  The 

result, as shown in Ex. 6.8 of Halzen and Martin, is 
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θ  (6.7) 

 
where one assumes the electron mass is negligible.  A comparison of Equations 6.7 
and 6.4 shows that the recoil effect introduces the factor E

E
′ . 

 
 
5)  Spin-½ Electron Scattering off a Spin-½ Point Particle which can Recoil 
 
This simply corresponds to e-µ- → e-µ- scattering which we worked out in Chapter 
5.  Recall Equation 5.82 
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A comparison of Equations 6.8 and 6.7 shows that the spin-½ target leads to an 

additional term, 
2

2
2 sin

2 2
q

M
θ− , which represents a magnetic interaction.  The spin of 

the electron can therefore be flipped via the magnetic interaction.  Equation 6.8 
shows that electron can now scatter to 180o. 
 
We are now ready to consider ep elastic scattering.  The proton is no longer 
considered as a structureless point particle.  Instead, proton is a spin-½ composite 
particle.  The ep elastic scattering can be represented by the following diagram: 
 
 k       k′ 
  e-     e-

 
 
  p     p 
 
 
 P      P′ 
 
The transition matrix Tfi can be written as (Equation 5.17) 
 

 4
2

1
fiT i j J d

q
µ

µ
⎛ ⎞

= − −⎜ ⎟
⎝ ⎠

∫ x  (6.9) 

 
The current from the point-like electron is 
 
 ( ) ( ) ( )i K K xj eu K u K eµ µγ

′−′= − i  (6.10) 
 
For the proton, the current can be written analogously as 
 
 ( )[ ] ( ) ( )         i p p xJ eu p u p eµ ′−′= i  (6.11) 
 
Equation 6.11 reflects the fact that initial and final states of the hadron are protons 
(elastic scattering).  However, the 4-vector represented by [       ] is no longer γµ.  
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One can write down a most general expression for the 4-vector, constructed out of 
the γ-matrices and the 4-momenta, p and p′, as 
 

 
[ ] ( ) ( )

( ) ( )
1 2 3

4 5

        

              

K K i p p K i p p

K p p K p p

µ µν µν
ν ν

µ µ

γ σ σ′ ′= + − + +

′ ′+ − + +
 (6.12) 

 
Now, the “Gordon decomposition” can be used to express ( )p p µ′ +  in terms of γµ 
and ( )p pµν

ν
σ ′ − : 

 

 ( ) ( ) ( ) ( ) ( ) ( )1
2

u p u p u p p p i p p u p
m

µµ µν
ν

γ σ⎡ ⎤′ ′ ′ ′= + + −⎣ ⎦  (6.13) 

 
Using Equation 6.13, the K5 term can be expressed in terms of the K1 and K2 terms.  
Furthermore, it can be shown that 
 
 ( ) ( ) ( ) ( )( ) ( ) i u p i p p u p u p p p u pµµν

ν
σ′ ′ ′ ′+ = − −  (6.14) 

 
using the fact that p( ) ( ) 0m u p− =  and ( )u p p′ ′( ) 0m− = .  Therefore, the K3 

term can be expressed in terms of the K4 term.  The p′ + p terms in Equation 6.12 
are not independent of the other three terms. 
 
A general expression for the hadronic current for proton in the ep scattering is 
 

( ) ( ) ( ) ( ) ( ) ( )2 2 2
1 2 32

i p p xJ eu p F q F q i q F q q u p e
M

µ µ µν µ
ν
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i  (6.15) 

 
Current conservation, , implies that 0J µ

µ∂ = 0q J µ
µ =  and we have 
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 (6.16) 

 
The first term in Equation 6.16 vanishes since ( ) ( ),  u p u p′  satisfy the Dirac 
Equation.  The second term is also equal to zero since µνσ  is antisymmetric with 
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respect to µν exchange.  Therefore, F3 (q2) = 0, and the hadronic current can be 
written as 

 ( ) ( ) ( ) ( ) ( )2 2
1 22

i p p xJ eu p F q F q i q u p e
M

µ µ µν
ν

κγ σ ′−⎡′= +⎢⎣ ⎦
i⎤

⎥  (6.17) 

 
Equation 6.17 can be re-expressed - using the Gordon decomposition (Equation 
6.13) – as 

 ( ) ( ) ( ) ( ) ( ) ( )
2

22 2
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iqF q
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M
µµ µ

κ
κ γ

⎡ ⎤
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 (6.18) 

 
For a point-like proton, κ = 0 and F1 (q2) = 1.  κ is the anomalous magnetic 
moment produced by the motion of the constituents.  Note that F1, F2 are functions 
of q2 only.  Other Lorentz scalars, such as p qi , can be expressed in terms of q2. 
 
To evaluate the ep elastic scattering cross section, we have 
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 (6.19) 

 
and Lµν is the leptonic tensor for the electrons (Equation 5.73). 
 
Using standard techniques for calculating the traces, the three terms in wµν are: 
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The ep elastic scattering cross section becomes 
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 (6.20) 

 
It is conventional to introduce the ‘Sachs’ form factors GE and GM: 
 

 ( )
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1 22
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 (6.21) 

 
and the ep elastic cross section is written as 
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where 
2

24
q

Mτ = − . 

 
For q2 → 0, the electron beam effectively sees a proton with charge e and magnetic 
moment of ( )1 2

e
Mκ+ .  We therefore have, from Equation 6.17, 

 
 ( ) ( )1 20 1          0 1P PF F= =  (6.23) 
 
Similarly, for electron scattering off a neutron, 
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 ( ) ( )1 20 0          0 1n nF F= =  (6.24) 
 
Equation 6.21 gives 
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This shows that 
 

 ( ) ( )00
P

P M
E

p

GG µ=  (6.26) 

 
 
It is found experimentally that ( ) ( )2   and  P P

E MG Q G Q2  have very similar Q2 
dependence, and 
 

 ( ) ( ) 22 2
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Recent data from Jefferson Lab showed, however, that ( ) ( )2 2P P

p E MG Q G Qµ  starts 
to deviate from unity as Q2 becomes large.  The root-mean-square radius of the 
proton is determined to be 
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2.  Electron-Proton Inelastic Scattering 
 
For an electron-proton inelastic scattering, ep → e′x, 
 
 k     k′ 
 
 
 
   ( )22 2

f pw P= >∑ M  
 p 
 
 
the final state now contains a hadronic system with invariant mass greater than the 
proton’s mass.  In other words, additional hadrons are produced other than the 
initial proton.  One can no longer write the hadronic current as 
 
 ( )[ ] ( )            J u p u pµµ ′=  
 
since ( )u p  is not the final state. ′
 
Instead, one needs to write down a general parameterization of the hadronic tensor: 
 

 (2 4 5
1 2 2 2

w w ww w g p p q q p q q p )M M M
µν µν µ ν µ ν µ ν µ ν= − + + + +  (6.29) 

 

(Note that the w3 term, 3
22

wi p q
M

µναβ
α βε , violates parity and is not included here 

for electromagnetic interaction.  It is present for weak interaction.) 
 
Again, the current conservation requires 
 
 0q w q wµν µν

µ ν= =  (6.30) 
 
Hence, we obtain 
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q q
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12 w

q
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The hadronic tensor can therefore be expressed as 
 

 2
1 2 2 2 2

q q w p q p qw w g p p q
q M q q

µ ν
µν µν µ ν⎛ ⎞ ⎛ ⎞⎛
= − + + − −⎜ ⎟ ⎜ ⎟⎜

⎝ ⎠⎝⎝ ⎠

i i ν ⎞
⎟
⎠

 (6.31) 

 

Unlike the elastic scattering case, where 
2

2
qp q = −i , for inelastic ep scattering 

2

2
qp q ≠ −i .  Also, w1 and w2 can be functions of two Lorentz-invariant scalars, 

rather than just one scalar as in the ep elastic scattering case. 
 

Some Lorentz invariant scalars are q2, p q
M

ν =
i , 

2

2
qx
p q
−

=
i

, and p q E Ey
p k E

′−
= =
i
i

. 

 
Also, the invariant mass of the hadronic system is 
 
 ( )22 2 2w p q M M qν= + = + + 2  (6.32) 
 
It can be shown readily that 
 
 0 ≤ x ≤ 1    and       0 ≤ y ≤ 1 (6.33) 
 
For elastic scattering, x = 1, y = 0. 
 
It is now straight-forward to calculate Lµνwµν, we have (ignoring m) 
 

 ( ) ( )( ) ( )22
1 2

24 2wL w w k k p k p k M k k
M

µν
µν ′ ′ ′⎡ ⎤= + −⎣ ⎦i i i i  (6.34) 

 
Note that by parametrizing wµν directly in the ep inelastic scattering, one bypasses 
the tedious calculation of the traces encountered in the ep elastic scattering when Jµ 
is parameterized (see equations between Equations 6.19 and 6.20). 
 
In the lab frame, noting that, ignoring me, we have  
 
 cos 2 sin 2k k EE EE EE θθ′ ′ ′ ′= − =i  
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           p k EM p k E M′ ′= =i i  
 
Therefore, 
 

 ( ) ( )2 2 2
2 14 cos , sin 2 ,

2 2
2L w EE w q w qµν

µν
θ θν⎧ ⎫′= +⎨ ⎬

⎩ ⎭
ν  (6.35) 

 
and the cross section can be written as 
 

 ( ) ( )
2

2 2 2 2
2 12 4

, cos 2 , sin
2 24 sin 2lab

d w q w q
dE d E

σ α θν νθ
θ⎧ ⎫= +⎨ ⎬′ Ω ⎩ ⎭

 (6.36) 

 

Note that instead of writing the cross section as d
d
σ
Ω

, like in the ep elastic 

scattering (Equation 6.20), the inelastic ep cross section is also a function of E′. 
 
It is instructive to write the e-µ- → e-µ- scattering cross section in a similar form 
 

 
2 2

2 2
22 4

cos sin
2 2 2 24 sin 2

lab

e e

d q
dE d m mEµ µ

σ α θ θ δ νθ− − − −→

⎛ ⎞
= −⎜ ⎟′ ′Ω ⎝ ⎠

2q⎛ ⎞
+⎜ ⎟

⎝ ⎠
 (6.37) 

 
The delta function in Equation 6.37 reflects the fact that e-µ- → e-µ- is an elastic 
scattering. 
 
If proton is a point particle with mass m, then a comparison of Equation 6.36 with 
Equation 6.37 shows that 
 

 
( )

( )

2
2

2

2 2
2

1 2

     , 2

2 , 22

qw q m

q qw q mm

ν δ ν

ν δ ν

⎛ ⎞= +⎜ ⎟
⎝ ⎠

⎛ ⎞= − +⎜ ⎟
⎝ ⎠

 (6.38) 

 
The δ function in Equation 6.38 implies that w1 and w2 are functions of one 
variable only in this case. 
 
One can consider another limiting case for Equation 6.36: 
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For e-p → e-p elastic scattering (where p is no longer a point-like particle), the 
cross section is 
 

 

2 2 2
2 2 2

2 4

2

cos 2 sin
1 24 sin 2

                               2

E M
M

lab

d G G G
dE d E

q
m

2
σ α τ θ τθ τ

δ ν

⎛ ⎞+
= +⎜ ⎟′ Ω +⎝ ⎠

⎛ ⎞+⎜ ⎟
⎝ ⎠

θ

 (6.39) 

 
In the elastic limit of the inelastic ep → e′x scattering (x → 1), the cross section 
should be the same as in Equation 6.39.  Therefore, one obtains 
 

 
( )

( )

2 2 2
2

2

2
2 2

1

,
1 2

2 , 2
2

E M

M

G G qw q
M

qw q G
M

τν δ ν
τ

ν τ δ ν

⎛ ⎞+
= +⎜ ⎟+ ⎝

⎛ ⎞
= +⎜ ⎟

⎝ ⎠

⎠  (6.40) 

 
Equation 6.40 provides useful constraints on w1 and w2 at the kinematic limit of     
x →1 (elastic scattering). 
 
The similarity of the ep → e′x and γ*p → x processes, namely 
 
 e     e′ 
       γ 
   
    γ* 
 
 p     x    p    x 
 
 
suggests that there should be a connection between the hadronic tensor wµν and the 
photon-proton total cross section.  It can be shown that 
 

 ( ) *
2

* 4tot p x w
k

µ ν
µν

π ασ γ ε ε→ =  (6.41) 

 
where k is the γ* flux, and ε is the polarization vectors of the virtual photon. 
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Choosing the z axis as the momentum direction of the virtual photon, we can write 
the polarization vectors as follows: 
 

 ( )
1

2 2 2,0,0,q qν ν⎛ ⎞= −⎜ ⎟
⎝ ⎠

 

 ( ) (11 0;1,
2

iε λ = ± = ±∓ ),0  (6.43) 

for longitudinally polarized virtual photon 
 
 
The gauge invariance 0q ε =i  is clearly satisfied. 
 
 From Equations 6.41 – 6.43, it is straight-forward to show in the lab frame, that 
 

 
( ) ( )

( ) ( )

2
1 2

2
2

2 2 2

1,                        
4 2

, 1
4

T T

T L

Kw q

Kw q
q

ν σ σ σ
π α

νν σ σ
π α

+ −
⎛ ⎞= =⎜ ⎟
⎝ ⎠

⎛ ⎞
= − +⎜ ⎟

⎝ ⎠

σ+
 (6.44) 

 
Equation 6.44, together with Equation 6.36, lead to the following expressions 
connecting the ep → e′x inelastic scattering cross section with the photon-proton 
total cross sections: 
 

 ( T
lab

d
dE d

σ )Lσ εσ= Γ +
′ Ω

 (6.45) 

 
where 
 

 
2 2

12 2
2

2

1
12

1 2 tan
2

K E
Eq

q
q

α
επ

ν θε
−

′
Γ =

−

⎛ ⎞−
= −⎜ ⎟
⎝ ⎠

 (6.46) 
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3.  Parton Model 
 
How do we expect the structure functions w1 and w2 to behave?  It is instructive to 
consider some special cases: 
 
 
1)  ep → ep elastic scattering from a ‘point-like’ proton 
 
As shown in Equation 6.38 
 

 
( )

( )

2
2

2

2 2
2

1 2

     , 2

2 , 22

qw q m

q qw q mm

ν δ ν

ν δ ν

⎛ ⎞= +⎜ ⎟
⎝ ⎠

⎛ ⎞= − +⎜ ⎟
⎝ ⎠

 

 

Defining  
2

2 2 ,  2
QQ q x Mν= − = ,  

and noting that  
2 21 12 2

Q Q
m mδ ν δ νν

⎛ ⎞ ⎛− = −⎜ ⎟ ⎜
⎝ ⎠ ⎝

⎞
⎟
⎠
,  

then 
 

 
( )
( )

2

1

   1

2 1

w x

Mw x x

ν δ

δ

= −

= −
 (6.47) 

 

If one plots νw2 versus 
2

2
Q

Mν , then one would observe that νw2 corresponds to a 

single line located at 
2

12
Q

Mν =  
 
 νw2       νw2
 
 
 
 
 
 

  1      
2

2
Q xMν =      Q2
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Also, the value of νw2 would be independent of Q2. 
 
 
2)  ep → ep Elastic Scattering from a Composite Proton 
 
In this case, Equation 6.40 gives 
 

 

( )

( )

2 2 2
2

2

2
2 2

1

2

2

,
1 2

  2 , 2
2

                
4

E M

M

G G qw q
M

qw q G
M

q
M

τν δ ν
τ

ν τ δ ν

τ

⎛ ⎞+
= +⎜ ⎟+ ⎝ ⎠

⎛ ⎞
= +⎜ ⎟

⎝ ⎠

= −

 

or 

 
( )

( )

2 2 2
2

2

2 2
2 2

1

, 1
1 2

2 , 1
2 2

E M

M

G G Qw q
M

Q QMw q G
M M

τν ν δ
τ ν

ν δ
ν ν

⎛ ⎞+
= −⎜ ⎟+ ⎝

⎛ ⎞
= −⎜ ⎟

⎝ ⎠

⎠  (6.48) 

 
νw2 and 2Mw1 are no longer related as in Equation 6.47 (where 2Mw1 = x νw2).  If 

one plots νw2 as a function of 
2

2
Q

Mν , one would still observe a single peak at 
2

12
Q

Mν = . 
 
 
 νw2       νw2
 
 
 
 
 
 

  1      
2

2
Q

Mν      Q2
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However, νw2 would drop rapidly versus Q2 since 2 and 2
E MG G  both fall off rapidly 

as a function of Q2. 
 
Similarly, for ep → eN* inelastic excitation of a nucleon resonance N*, one also 
observes a rapid fall-off of νw2 versus Q2. 
 
 
3)  eq → eq Elastic Scattering 
 
q signifies a point-like particle (quark) which carries a charge ei and has a mass  
mq = x′M.  The cross section for eq → eq elastic scattering is (for spin-½ q) 
 

 
2 2

2 2 2
22 4

cos sin
2 2 2 24 sin 2

i
q q

d qe
dE d m mE

σ α θ θ δ νθ

2q⎧ ⎫ ⎛ ⎞⎪ ⎪= − ⎜⎨ ⎬ ⎜′ Ω ⎪ ⎪⎩ ⎭ ⎝
+ ⎟⎟

⎠
 (6.49) 

 
The structure functions in this case are 
 

 
( )

( )

2 2
2 2 2
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1, 1
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    2 , 1
2 2

i i
q

i

q Qw q e e
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Q Qw q e
M x M x

ν δ ν δ
ν ν

ν δ
ν ν

⎛ ⎞ ⎛ ⎞
= + = −⎜ ⎟ ⎜ ⎟⎜ ⎟ x′⎝⎝ ⎠

⎛ ⎞
= −⎜ ⎟′ ′⎝ ⎠

⎠  (6.50) 

 

νw2 plotted as a function of 
2

2
Q

Mν  would peak at x′ 
 
 
 νw2       νw2
 
 
 
 
 
 

  x′ 1      
2

2
Q

Mν      Q2
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while νw2 is independent of Q2. 
 
 
4)  ep → e′x where p consists of point-like charged partons 
 
This is a generalization of 3).  We define fi(x′) as the probability for parton of type i 
to have a fraction x′ of nucleon’s momentum (mass).  Equation 6.50 then 
generalizes to 
 

 
( ) ( )

212 2
2 0

2 2
2

, 1
2
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i i
i

i i
i

Qw q dx f x e
M x
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∑∫

∑

⎠  (6.51) 

 
where we use  

 
2 2

1
2 2

Q Qx x
M x M

δ δ
ν ν

⎡ ⎤⎛ ⎞ ⎛ ⎞
′ ′− = −⎢ ⎥⎜ ⎟ ⎜′⎝ ⎠ ⎝

⎟
⎠⎣ ⎦

 

 

Since 
2

2
Q
Mν

 is defined as x, Equation 6.51 can also be written as 

 
 ( ) ( )2 2

2 ,  i i
i

w q e x f xν ν =∑  (6.52) 

Similarly, one can show that 
 

 ( ) ( )2 2
1

1,
2 i i

i

 Mw q e x f x
x

ν = ∑  (6.53) 

 
Equations 6.52 and 6.53 show that νw2 and Mw1 exhibit the ‘scaling’ behavior.  
Namely, they only depend on a single parameter x.  One therefore defines the 
following structure functions: 
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( )

2
2 2

1 1 2

 

1
2

i i
i

F w e x f x

F Mw F x
x

ν= =

= =

∑
 (6.54) 
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The scaling behavior of νw2 and Mw1 was observed in the pioneering ‘deep-
inelastic’ scattering experiments.  It was called ‘deep inelastic’ since the invariant 
mass w of the hadronic system is much larger that the proton mass w >> M. 
 
Note that the relation  is a result of the assumption that the parton 
has spin-½ (Equation 5.49).  If one assumes that the partons are spin-0 object, then 
the relevant scattering cross sections would be the e

1 2( ) ( ) / 2F x F x x=

-π- → e-π-: 
 

 
2 2

2
2 4

cos
2 24 sin 2

d
dE d mE

σ α θ δ νθ
⎛ ⎞

= ⎜′ ′Ω ⎝ ⎠

q
+ ⎟  (6.55) 

 
In this case, we have 
 

 

2

2

1

  
2

0

qw
m

w

δ ν
⎛ ⎞

= +⎜
⎝

=

⎟
⎠  (6.56) 

 
which implies 
 
 F1(x) = 0 (6.57) 
 
Experiments favor 2x F1(x) = F2(x), rather than F1(x) = 0.  Therefore, they support 
the interpretation that charged partons have spin-½. 
 
Equations 6.44 can also be written as 
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 (6.58) 
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where we use 1 0
ν
→  for large ν. 

 
Equation 6.58 shows that for spin-½ parton, F2 = 2xF1, and 0Lσ → .  In contrast, 
for spin-0 parton, Equation 6.58 shows that 0Tσ = .  Hence, we have 
 

 

10     for spin  partons2

0     for spin 0 partons

L

T

T

L

σ
σ
σ
σ

→ −

→ −
 (6.59) 

 
Equation 6.59 can be readily understood from a consideration of parton’s helicity 
and γ*’s helicity.  In the Breit frame,  
 
 
spin-½ case: 
 
 γ*     helicity conservation requires λ = +1 
  qi    γ* be absorbed in this case, and 
  qf    γ* cannot have λ = 0.  Similarly, λ = -1 
λ = +1     γ* is required if the qi is left-handed 

 
 
spin-0 case: 
 
 γ*    qi    Since a spinless qi cannot absorb 
     λ = ±1   γ*, only λ = 0   γ* can contribute. 
 λ = 0    qf
 
 
 
 
The phenomenon of scaling was first observed at SLAC in the late 1960’s.  As the 
following figure shows, as the beam energy increases the inelastic cross sections 
rise as w increases.  At large w, the underlying process is the eq → eq elastic 
scattering. 
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Figure 7.  Visual fits to spectra showing the scattering of electrons from hydrogen 
at 10o for primary energies, E, from 4.88 GeV to 17.65 GeV.  The elastic peaks 
have been subtracted and radiative corrections applied.  The cross sections are 
expressed in nanobarns per GeV per steradian.  
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A similar pattern was also observed when the inelastic cross section was measured 
at a fixed beam energy, but with the spectrometer angle (scattering angle) varying 
from very small (θ = 1.5o) to larger (θ = 18o) angles.  As the momentum transfer 
increases, the excitations of the nucleon resonances ( )* *,  N ∆  fall off rapidly.  
However, the cross sections for deeply inelastic scattering (large w) remain 
sizeable. 
 

 
 
 

Figure 8.  Visual fits to spectra showing the scattering of electrons from hydrogen 
at a primary energy E of approximately 13.5 GeV, for scattering angles from 1.5o 
to 18o.   
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The scaling behavior of νw2 (= F2) was observed as shown in the following figure: 
 

 
 
In this figure, νw2 is shown to be independent of Q2 for a fixed value of w 

( )1w x= . 

 
The SLAC data also provided the first direct evidence for the existence of ‘sea’ 
quarks.  As shown below, 2Mpw1, which is F1(x), was observed to rise as w 
increases ( )1w x= .  The large parton density at small-x is due to the gluon 

splitting into quark-antiquark sea. 
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The SLAC experiments have used both the hydrogen and deuterium targets to 
extract the F2 structure functions for proton and for neutron.  Recall that 
 
 

 

( ) ( )

( ) ( )

( ) ( )

2

2

4 1/      (ignoring heavier quarks)
9 9
4 1/
9 9
4 1         
9 9

p
p p p p

n
n n n n

p p p p

F x u u d d

F x u u d d

d d u u

= + + +

= + + +

= + + +

 (6.60) 

 
where isospin symmetry is assumed in order to relate the parton distributions in 
neutron to those in proton. 
 
The ratio, 2 2/n pF F , is shown to be close to 1 at x → 0, and it approaches ~ 0.3 as     
x → 1.  Equation 6.60 implies 
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that 2 2
1 /4

n pF F≤ 4≤

4 p

, where the ¼ limit is reached when dp = 0, and the limit 

 is obtained when u2 2/n pF F = p = 0.  The 2 2/nF F  data suggests that down quark 
drops more rapidly than the up quark as x → 1.  Indeed, one finds 

( )( ) / ( ) 1d x u x x−  as x → 1. 
 
Another interesting SLAC result is that the 2 2

p nF F−  data can be used to reveal the 
valence quark distribution.  From Equation 6.60, it can be readily shown that 
 

 ( ) ( )(2 2 3
p n

v v
x )F F u x d x− = −  (6.61) 

 
where we assume ( ) ( )p pu x d x=  and the valence quarks uv, dv are defined as 
 

 
( ) ( ) ( )
( ) ( ) ( )

v p p

v p p

u x u x u x

d x d x d x

= −

= −
 (6.62) 

 
The early SLAC data shows that the valence quarks distribution peak at x ~ ⅓, as 
one might expect if the effective quark mass is roughly ⅓ of proton’s mass. 
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The parton model requires that the total momentum of the nucleon is carried by all 
partons.  In other words, 
 
 ( )

1

0 i
i

xPf x dx P=∑∫   

hence,  (6.63) 
 ( )

1

0
1i

i

xf x dx =∑∫  

 
where P is the momentum of the nucleon, and i signifies various types of partons.  
Again, important information can be extracted by combining the 2

pF  data with the 

2
nF  data: 

 

 ( ) ( ) ( )( ) ( ) ( )( )2
4 1 0.18
9 9

pF x dx u x u x xdx d x d x xdx= + + +∫ ∫ ∫  (6.64) 

 ( ) ( ) ( )( ) ( ) ( )( )2
4 1 0.12
9 9

nF x dx d x d x xdx u x u x xdx= + + +∫ ∫ ∫  (6.65) 

 
One obtains, from Equation 6.64 and Equation 6.65, the momentum fraction 
carried by the up and the down quarks. 
 

 
( ) ( )( )
( ) ( )( )

0.36

0.18

x u x u x dx

x d x d x dx

+

+

∫
∫

 (6.66) 

 
Therefore, one concludes that the up quarks carry roughly twice the momentum 
fraction of proton compared with the down quarks.  This is consistent with the 
quark model (assuming sea quarks carry a small fraction of the momentum). 
 
Equation 6.66 also implies that ~ 50% of the proton momentum is carried by 
neutral partons.  Indeed, it is now quite well established that gluons are responsible 
for ~50% of the nucleon’s momentum.  The gluon distribution function, g(x), can 
be determined from processes such as jet production, or from the scaling violation 
in DIS, which is due to the coupling between quarks and gluons. 
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The structure function measured in DIS is a sum of quarks and antiquarks with 
various flavors.  It is useful to isolate the quark distribution of a particular flavor.  
This ‘flavor decomposition’ can be made by using a variety of techniques: 
 
a)  Since 2

pF  is mostly sensitive to u(x) while 2
nF  is sensitive to d(x), a comparison 

between 2
pF  and 2

nF  can provide information on u(x) and d(x). 
 
b)  Semi-inclusive DIS 
 
In this type of measurement, a hadron (usually an energetic pion or kaon) is 
detected in coincidence with the inelastically scattered electron.  If the virtual 
photon struck a u(d) quark, this quark is most likely to hadronize into a π+(π-) 
meson.  Therefore, the ‘flavor’ of the struck quark can be reasonably well 
determined. 
 
c)  The Drell-Yan Process 
 
The Drell-Yan process is basically an electromagnetic process occurring in hadron-
hadron interaction.  The underlying mechanism is the annihilation of the quark-
antiquark pair into a virtual photon, which 
 
 q     µ-

  γ* 
 
 
 q      µ+

 
 
subsequently decays into a pair of charged leptons (µ+µ-, or e+e-). 
 
It has been demonstrated that proton-proton and proton-nucleus induced Drell-Yan 
process is very sensitive to the antiquark distribution in the nucleon and/or nucleus.  
Furthermore, one can use the Drell-Yan process to measure the quark distributions 
of mesons.  Indeed, the  and N x K N xπ µ µ µ µ± + − ± +→ → − , as well as the 
pN xµ µ+ −→  reactions have been measured, and they provide the rare information 

we have so far on the parton distributions in π, K and p .  Note that these particles 
cannot be studied in Deep Inelastic Scattering experiments since they are not 
available as targets. 
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d)  Generalized Drell-Yan Process:  W/Z production 
 
 u     µ+     u     µ-

  w+       zo

 
  
 d      νµ     u      µ+

 
 
The Drell-Yan process can be generalized to describe W/Z production in hadron-
hadron collider.  The underlying processes involve a quark-antiquark annihilation 
into the charge W boson or the neutral Z boson.  By comparing W+ and W-

production, one can isolate the contributions from u versus d quarks (and u  versus 
d  too). 
 
 
e)  Neutrino-Induced DIS 
 
As will be explained in the next chapter, neutrino induced DIS reactions are very 
effective in separating the quark distributions from the antiquark distributions.  Of 
particular interest is the possibility of using semi-inclusive ν-induced DIS to 
determine the strange (and anti-strange) quark distributions in the nuclei.  This is 
accomplished by detecting the µ+µ- pair from the ν-induced DIS. 
 
The mechanism for producing a µ+µ- pair in ν-induced DIS is as follows: 
 
 νµ     µ-

 
  w+     µ+

 s               c        w+

    νµ
       s 
 
 
The µ- is from the (νµ, µ-) process, and the µ+ is from the charm decay.  In a similar 
fashion, µν  beam can be used to probe the s  distribution in the nucleon.  Although 
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( ) ( )
1

0
0s x s x dx−∫ = , it is possible that s(x) and ( )s x  have different dependences 

on x such that at certain x, ( ) ( ) 0s x s x− ≠ . 
 
Symmetries in Parton Distributions 
 
It is useful to use symmetry to connect various parton distributions.  Some 
examples are: 
 
 
a)  Isospin Symmetry 
 
This allows us to make connection between the parton distributions in hadrons 
which are isospin partners of each other.  The proton and neutron form an isospin 
doublet, and one can use isospin symmetry to relate their parton distributions: 
 

 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

          

          
p n p n

p n p n

u x d x d x u x

u x d x d x u x

= =

= =
 

 
Similarly, π+ and π- are members of the isospin triplet, and their parton 
distributions are related: 
 

 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

           

          

u x d x d x u x

u x d x d x u x
π π π π

π π π π

+ − + −

+ − + −

= =

= =
 (6.67) 

 
 
b)  Charge-Conjugation Symmetry 
 
For two hadrons which are related by particle-antiparticle operation (charge-
conjugation), their parton distributions are also related.  For example, the parton 
distributions in p and p  are connected: 
 

 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

          

          
p p p p

p p p p

u x u x d x d x

u x u x d x d x

= =

= =
 (6.68) 

 
Similarly, π+ and π- are related by charge-conjugation operation (they are 
antiparticles of each other). 
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Hence, 

 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

          

          

u x u x d x d x

u x u x d x d x
π π π π

π π π π

+ − + −

+ − + −

= =

= =
 (6.69) 

 
From Equations 6.67 and 6.69, we obtain 
 

 
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

u x d x d x u x v x

u x d x u x d x s x
ππ π π π

ππ π π π

+ + − −

+ + − −

= = = =

= = = =
 (6.70) 

 
We conclude that there are only two parton distributions, vπ(x) and sπ(x), the 
valence and sea quark distributions, required to describe π+ and π-. 
 
 
c)  SU(3) Symmetry 
 
The SU(3) symmetry can be used to relate the parton distributions of various SU(3) 
multiplets.  For example, the Σ+(uus) parton distributions are related to proton 
(uud)’s distributions as follows 
 

 

( ) ( )
( ) ( )
( ) ( )

 

 

p

p

p

u x u x

s x d x

s x d x

+

+

+

Σ

Σ

Σ

=

=

=

 (6.71) 

 
Since the SU(3) symmetry is known to be broken, Equation 6.71 is only 
approximately true.  Experimentally, the parton distributions of the hyperon (like 
Σ+) can be measured using the Drell-Yan process with a hyperon beam.  However, 
in practice, these are difficult measurements and have not been done yet. 
 
 
Spin-Dependent Structure Functions 
 
Polarized DIS using polarized electron or muon beams scattering off polarized 
hydrogen or deuterium targets has been used to determine the spin-dependent 
structure functions g1(x) and g2(x).  This is an active area of research.  From all 
experiments carried out so far, it was found that only 30% of proton’s spin is 
carried by the up and down quarks.  The other 70% must reside in sea quarks, 
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gluons, or/and orbital angular momentum.  However, it is not yet clear how 
proton’s spin is distributed into these various components. 


