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Chapter 7 
 

Weak Interaction 
 
 
1.  Historical Overview 
 
Radioactivity was discovered by Becquerel in 1896 and β-ray was soon identified 
as electrons.  In 1914 Chadwick observed that the energy of electrons emitted in β-
decay is continuous.  This puzzling discovery suggested violation of energy and 
angular momentum conservation.  In the early 1930s, Pauli proposed the existence 
of a weakly interacting fermion, neutrino, as a solution to this puzzle.  Soon 
afterwards, Fermi put forward his theory of nuclear β-decay in 1933. 
 
Although the study of weak interaction was once limited to nuclear β decays, we 
now know that weak interaction is present for all quarks and leptons, although the 
weak interaction is often masked by the much stronger electromagnetic and strong 
interactions. 
 
The Lagrangian density (L) for electromagnetic interaction can be written as 
 
  EM

IntL e A J Aµ µ
µ µψγ ψ= − = −  (7.1) 

where 
 J eµ µψγ ψ=  
graphically, 
 e     e′ 
 
 
        γ 
 
Fermi assumed that nucleon β-decay is represented by a similar diagram where the 
EM field is replaced by the eν −  current: 
 n       p 
 
 
       ν     e−  
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Fermi suggested the following substitutions to go from EM interaction to weak 
interaction: 
 

         

         2

e e p n

e

F

A

e G

µ µ

µ µ
ν

ψ γ ψ ψ γ ψ

ψ γ ψ

→

→

→

 (7.2) 

 
The Fermi coupling constant, GF, was to be determined by experiment and was 
found to be 
 
 ( ) 251.03 10FG pm

−−= ×  (7.3) 
 
The Lagrangian density for β-decay was therefore given as 
 

 
2
F

p n e
G µ

eβ µ νψ γ ψ ψ γ ψ= −L  (7.4) 

 
In 1934 β+ decay was observed by Curie and Joliot.  Later, Alvarez observed 
electron capture in 1938.  Since Equation 7.4 only describes an emission of e- (or 
an absorption of e+), in order to describe β+ decay and electron capture the 
Lagrangian density needs to be generalized to 
 

 
2
F

p n e e n p e e
G µ

β µ ν µ ν
µψ γ ψ ψ γ ψ ψ γ ψ ψ γ ψ⎡ ⎤= − +⎣ ⎦L  (7.5) 

 
In other words, the Hermitian conjugate of Equation 7.4 is added to the Lagrangian 
density. 
 
Note that Lβ is a sum of scalar product of two Lorentz 4-vectors, and is invariant 
with respect to Lorentz transformation and spatial inversion. 
 
In 1936 Gamow and Teller pointed out that Lβ can contain other terms too without 
violating parity and Lβ was generalized to 
 

 ( . .
2
F

p j n e j e
j

G )L O O h cβ ψ ψ ψ ψ⎛ ⎞= − +⎜ ⎟
⎝ ⎠

∑ ν  (7.6) 

where 
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 51,  ,  ,  ,  jO µ µν µ
5γ γ σ γ γ=  (7.7) 

 
representing scalar, pseudoscalar, vector, tensor, axial-vector (S, P, V, T, A) 
interaction respectively. 
 
For nuclear β-decays, momentum and energy transfers are very small, and one can 
use non-relativistic wave function for the nucleons: 
 

 
0
φ

ψ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 (7.8) 

 
where the relativistic ‘small’ component is set to zero. 
 

Note that ( )* 1 0
0 ,0 0

0 1 0
n

p j n p j

φ
ψ ψ φ

⎛ ⎞ ⎛
= ⎜ ⎟ ⎜−⎝ ⎠ ⎝

⎞
⎟
⎠
 (7.9) 

 
50 1,  ,  ,  j µ µν µγ σ γ γ=  all have non-vanishing diagonal elements.  In contrast, 

 has only off-diagonal elements.  Hence, 5 0 1
1 0

γ
⎛

= ⎜
⎝ ⎠

⎞
⎟

 
 5 0p nψ γ ψ =  (7.10) 
 
and the pseudoscalar term can be ignored in nuclear β-decay.  From Equation 7.8, 
we obtain for the various couplings 
 

 

5

:        

:      for 0;  0 for 1,  2,  3

:    for , 1,  2,  3 cyclic;  0 otherwise

:   for 1,2,3;  0 for 0

p n p n

p n p n

k
p n p n

k
p n p n

S

V u

T

A k

µ

µν

µ

ψ ψ φ φ

ψ γ ψ φ φ µ

ψ σ ψ φ σ φ µ ν

ψ γ γ ψ φ σ φ µ µ

+

+

+

+

=

= = = =

= = =

= − = = = =

 (7.11) 

 
From Equation 7.11 we conclude that the scalar and vector couplings cannot 
induce spin-flip transitions (since spin-up nφ  can not couple to spin-down pφ , for 
example).  The axial-vector and tensor couplings can cause spin-flip transition 
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(since kσ  contains non-zero off-diagonal matrix elements, allowing coupling 
between spin-up nφ  to couple to spin-down pφ , for example).  Therefore, we have 
 

 
,  couplings : 0  (no spin-flip)

,  couplings : 0,  1  (except 0

S V J

A T J J

∆ =

∆ = ± = ⇒ 0)J =
 (7.12) 

 
Experimentally, 1J∆ =  spin-flip transitions, as well as 0J J 0= ⇒ =  transitions 
were observed in weak decays.  Therefore the axial and/or tensor terms in Lβ has to 
be non-zero.  Similarly, S and/or V coupling has to be non-zero. The determination 
of the magnitudes of Cj had to wait for two decades. 
 
The discovery of muons in the 1930s and their decays as well as the pions, kaons, 
and hyperons and their decays, suggested that they have similar characteristics and 
coupling strength.  The nuclear β-decay phenomenon was therefore generalized to 
cover other weak-decay processes.  The idea of ‘universal charged weak 
interaction’ was put forward to describe various decay processes as simply 
different manifestation of a general Fermi interaction. 
 
In 1956, the τ/θ puzzle, where 
 θ → π+π0 (even parity) 
 τ → π+π+π- (odd parity) 
 
were observed for two particles, θ and τ, of similar if not identical masses.  This 
prompted Lee and Yang to suggest that parity could be violated in weak decay.  In 
fact, they pointed out that parity conservation was never tested in β-decay 
experiments. 
 
Lee and Yang’s suggestion that parity might not be conserved in weak interaction 
was soon confirmed by Wu et al., who used polarized 60Co(5+) and found that the 
e- from ( )60 60 *Co 4iN e eν

+ −→ + +  decay were emitted preferentially opposite to 

the spin orientation of  60Co.  This implies that the S Pi  term, which is odd under 
space inversion, is non-vanishing, hence parity is violated. 
 
Subsequent experiments by Garwin, Lederman, Weinrich and by Friedman and 
Telegdi confirmed that parity was violated in the 

 and eeµ µπ µ ν µ ν ν+ + + +→ + → + +  decays. 
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The observation of parity violation in weak interaction implies that Lβ can have 
both a scalar component and a pseudoscalar component: 
 
 Scalar 

 ( )52
F

p j n e j j j e
j

GL O O C Cβ νψ ψ ψ γ ψ⎡ ⎤′⎡ ⎤= − −⎣ ⎦ ⎣ ⎦∑  (7.13) 

         pseudoscalar 
 
The coefficients Cj and jC′  have to be determined by experiments.  They can be 
complex numbers if time-reversal invariance is violated.  Hence, a total of 10 
coupling constants (Cj and jC′  for S, P, V, A, T) with 19 real constants need to be 
determined (eliminating one arbitrary phase)! 
 
Frauenfelder et al. found that electrons emitted in 60Co β-decay are longitudinally 
polarized with helicity consistent with v

c− .  Similarly, positrons were found to 

have a helicity of v
c .  These results showed that weak interactions result in 

electrons which are left-handed and positrons of right-handedness in relativistic 
limit v → c. 
 
The observed handedness of electrons and positrons implies that 
 

  (7.14) 
for  or  coupling

for ,  ,   couplings
j j

j j

C C V A

C C S P T

′ = +

′ = −
 
Eq. 7.14 can be understood by realizing that for S coupling, we have 

( ) ( ) ( ) ( )e e e L e R e R e Lν ν νψ ψ ψ ψ ψ ψ= + . Therefore, a left-handed electron can only couple to 
a right-handed neutrino for S coupling. Since 5( ) 1/ 2(1 )e R eν νψ γ ψ= + , we conclude 
from Eq. 7.13 that . Other results in Eq. 7.14 can be obtained with similar 
considerations. 

SC ′ = − SC

 
In order to distinguish the two possible scenarios in Equation 7.14, it was 
necessary to determine the νe helicity.  This was accomplished in an ingenious 
experiment by Goldhaber, Grodzins, and Sunyar who used the following reactions: 
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 ( )152 152 * 1ee Eu Smν− + → + −

2
A

 (7.15) 
 (0-)    152Sm (0+) + γ 
 
From the measurement of the circular polarization of γ, it was concluded that νe has 
a negative helicity:  h (νe) = -1.  This result showed that S, P, T coupling sin 
Equation 7.14 are small if not zero.  Therefore, only CA and CV are mainly 
responsible for β-decays. 
 
From the rates of the 10C → 10B, 14O → 14N, 0+ → 0+ transition, where only CV can 
contribute, one determined that 
 
 CV = 1 (7.16) 
 
From neutron lifetime, which is proportional to , one obtained 2 3VC C+
 
 1.25A VC C =  (7.17) 
 
The relative phase between CA and CV was determined through angular correlation 
experiment in polarized neutron decay: 
 CA = +1.25 CV (7.18) 
 
Collecting Equations 7.13, 7.14, 7.16, and 7.18, one finds 
 

 ( ) ( )5 51 1.25 1
2
F

p n e
G µ

eβ µ νψ γ γ ψ ψ γ γ= − − −L ψ  (7.19) 

 
In 1958 Feynman-Gellmann and Sudarshan-Marshak proposed the universal V-A 
form for charged weak current: 

 (
2
FG J J J J )µ µ

β µ
+ += − +L µ  (7.20) 

 
where Jµ is the ‘charge-lowering’ and Jµ

+  the ‘charge-raising’ weak current.  Jµ 
consists of both a lepton part and a hadron part 
 
  (7.21) hadron leptonJ J Jµ µ µ= +
 
 ( ) ( )5 51 1 ...lepton

e eJµ µ ν µ µ νµψ γ γ ψ ψ γ γ ψ= − + − +  (7.22) 
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 ( )51hadronJ Dµ µγ γ= − U  (7.23) 
 
Note that the deviation of CA/CV from 1 (Equation 7.18) was attributed to strong 
interaction effect in the nucleon. 
 
Equation 7.23 only explained weak decays with 0S∆ = .  However,  weak 
decays, such as 

1S∆ =

 ,  ...K P ,  neµ ν π+ + − − −→ Λ→ Σ → ν  
 
had also been observed with reduced strength.  In 1963 Cabbibo combined the 

,  transitions by suggesting the following form for the hadronic weak 
current: 

0S∆ = 1S∆ =

 
 ( )51hadron

CJ Dµ µγ γ= − U

C S

 (7.24) 
where 
 cos sinC CD Dθ θ= +  (7.25) 
 
The weak interaction eigenstate is therefore a mixture of the strange and down 
quarks.  The mixing angle θC is determined from the relative strength of the 

 versus  transitions. 0S∆ = 1S∆ =
  (7.26) 13o

Cθ
 
The Feynman-Gellmann-Cabbibo’s scheme is a generalization of Fermi’s theory.  
It suffers the same difficulties of the Fermi’s theory, as recognized by Heisenberg 
in 1936.  Namely, the ‘contact’ interaction violates unitarity at sufficiently high 
energies.  This problem can be illustrated by considering the νe + e- → e- + νe 
reaction.  As will be shown later, the cross-section for this reaction is 
 

 
2
FG Sσ
π

=  (7.27) 

 
However, the cross-section can also be expressed as 
 

 ( ) 2d f
d
σ θ=
Ω

 (7.28) 

where 
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 ( ) ( ) (
0

1 2 1 cos
2 L Lf M

E
)Pθ θ

∞

=

= +∑  

 
For a contact interaction of zero range, only the S-wave contributes, and Equation 
7.28 becomes 
 

 
2

2 0
02

1
4

Md M
d E S
σ
= =

Ω
          2

0
4 M
S
πσ =  (7.29) 

 
unitarity implies 
 
 0 1M ≤  (7.30) 
Hence 

 4
S
πσ ≤  (7.31) 

 
From Equations 7.27 and 7.31, one concludes that unitarity limit is violated at 
 

 
24 FG S

S
π

π
=  (7.32) 

which occurs at 600 S GeV  
 
Can second-order diagram cancel the leading-order and make the result finite?  It 
turns out that the second-order diagram for point-interaction such as 
 
 e-    νe    e-

 
 
 νe    e-   νe
 
actually diverges.  In QED, one also encounters divergences.  However, they can 
be removed to all orders by mass and charge renormalization.  This is not possible 
for the Fermi theory. 
 
Another way out is to introduce a vector boson mediating the weak interaction.  
The νe e- → e- νe interaction is therefore 
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 νe       e-

2
g  

 
      w 
 
 
 e-     νe
 
where 

 
2 5 2 5

2 2

1 1
2 2 2

w
e e e e

w

ig g q qM u u u
q M

µν µ ν

µ ν ν ν
γ µγ γ −

⎡ ⎤⎡ ⎤ ⎡− − − + −
= ⎢ ⎥⎢ ⎥ ⎢−⎣ ⎦ ⎣⎣ ⎦

uγ ⎤
⎥
⎦

 (7.33) 

 
At low energies, the Fermi theory should emerge.  Therefore 
 

 
2

282
F

w

G g
M

=  (7.34) 

 
The expression of the cross-section resulting from the lowest order diagram is 
 

 ( )
( )

4

22 232e e

w

d ge e
dy q M

σ ν ν
π

− −→ =
−

S  (7.35) 

 
which does not have the unitarity problem.  However, higher order diagrams still 
diverge.  Furthermore, for processes such as 
 e e w wν ν + −+ → +  
 
it can be shown that the cross-section diverges even in the Born term.  The origin 
of this divergence is the qµqν term in the w-propagator, signifying a longitudinally 
polarized massive w (This term is absent for QED). 
 
Despite the problem encountered by the Intermediate Vector Boson model, it was 
proposed in the 1960s that there should be neutral weak interaction mediated by 
neutral vector bosons.  However, no neutral weak interaction was observed.  In 
particular, it was very puzzling why    K+ → µ+νµ has a B.R. of 63%, while KL → 
µ+µ- has a B.R. of only 9 x 10-9, which can be accounted for by radiative effect. 
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    µ+         µ+ 

 
   w+        νµ             z0    µ-

  u         s       d      s 
 K+        KL
  s         s  
   K+ → µ+νµ       KL → µ+µ-

 
 
Should neutral weak current only occur for u → u, d → d, s → s and not for the 
flavor-changing case d → s, s → d, u → c, etc.? 
 
In analogy with the charged weak current, one should have, for the weak neutral 
current, a term like 
    where   cos sinc c c c cd d d d sθ θ= +  (7.36) 
now, 

 
( )( )

( )( )2 2

cos sin cos sin

       cos sin sin cos

c c c c c c

c c c c

d d d s d s

dd ss sd ds

θ θ θ θ

θ θ θ θ

= + +

= + + +
 (7.37) 

 
Equation 4.37 shows that the flavor-changing neutral current terms sd ds+  should 
exist, which is in disagreement with the tiny B.R. for KL → µ+µ- decay. 
 
The solution to this puzzle was the suggestion that a new quark flavor, called 
charm, exists.  We now have two quark doublets 
 

    and   
u c
d s
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 
It is natural, in an extension of the Cabbibo mixing, to expect that the weak 
eigenstate for S (i.e. Sc) can be written as 
 Sc = cos θc S – sin θc d (7.38) 
 
Therefore, the combined neutral current from dc and Sc is 
 
 c c c cd d S S dd SS+ = +  (7.39) 
 
and there is no flavor-changing ,  dS Sd  terms. 
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The presence of the charm quark also implies that the hadronic weak charged 
current becomes 
 
 ( ) ( )5 51 1c cJ D U Sµ µ µγ γ γ γ= − + − C  (7.40) 
 
One expects that second-order charge-current processes can contribute to 

0
LK µ µ+ −→ : 

 
        cosθc  w-              -sinθc  w-

 d      µ-      d      µ-

  u    νµ          c    νµ

 S       µ+      S      µ+

        sinθc w+              cosθc  w+

 
 
Note that these two diagrams involve an up and a charm quark exchange, 
respectively.  If mu = mc, these two diagrams would cancel and would not 
contribute the 0

LK µ µ+ −→  decay. 
 
Based on the experimentally observed B.R., one can determine that the mass of the 
charm quark is . 1 3 cm G− eV
 
In 1973 Kobayashi and Maskawa extended the Cabbibo theory to 3 generations.  In 
this case, there are four parameters in the 3 x 3 matrix; three of them are the 
mixing angles θ1, θ2, θ3 plus one phase δ (eiδ).  A non-zero value of S implies CP-
violation in charged-current weak interactions. 
 
The electroweak theory of Glashow, Weinberg and Salam in the 1960s, which 
unified the electromagnetic and the weak interactions, had a unique prediction on 
the existence of neutral current: 
 l     l     q     q 
 
     z0          z0

 
However, it is difficult to identify effects of neutral current in the quark sector, 
since the NC effect is overshadowed by the electromagnetic process.  To overcome 
this problem, one can use neutrino beam, which is not subjected to EM interaction. 
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In 1973, neutral current was discovered in CERN using a Freon bubble chamber 
(Gargamelle).  The NC reaction 
 ( ) ( ) hadronsNµ µ µ µν ν ν ν+ → +  
 (no µ- or µ+) 
 
was observed.  The CC events from 
 
 ( ) ( ) hadronNµ µν ν µ µ− ++ → +  
 
were also observed.  The ratio of the neutral current yield versus charged current 
yield was found to be 

 
( )
( )

0.21 0.03

0.45 0.09

NC CC

NC CC
ν

ν

= ±

= ±
 

 
The standard model prediction is 
 

 

2 4

2 4

1 20sin sin
2 27
1 20sin sin
2 9

w w

w w

NCR
CC
NCR
CC

ν
ν

ν
ν

θ θ

θ θ

⎛ ⎞= = − +⎜ ⎟
⎝ ⎠

⎛ ⎞= = − +⎜ ⎟
⎝ ⎠

 (7.41) 

 
Hence one deduces 0.3 < sin2θw < 0.4 from the Gargamelle data. 
 
In 1978, evidence for neutral current was found also at SLAC in a deep-inelastic 
scattering experiment using polarized electron beam.  In this e d e x′+ → +  
scattering, the following two diagrams can contribute: 
 
 e     e′     e     e′ 
 
     γ         z0

 
 
 
The single-spin asymmetry, A, defined as 

 R L

R L

A σ σ
σ σ

−
=

+
 (7.42) 
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could have a non-zero value as a result of the interference of the γ and z0 diagrams.  
This asymmetry is due to a term proportional to e ePσ i , where eσ  is the spin of the 
electron (R, L refers to the right-handed and left-handed electron beam, 
respectively).   is the momentum vector of the scattered electron.  It is clear that 
the  term violates parity. 

eP

e ePσ i
 
The predicted asymmetry is related to the Weinberg angle θw: 
 

 ( ) ( )
( )

22
2 2

2

1 19 201 sin 1 4sin
10 92 2 1 1

F
w w

yG QA
y

θ θ
πα

⎧ ⎫⎡ ⎤− −⎪ ⎪= − − + − ⎢ ⎥⎨ ⎬
+ −⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

 (7.43) 

 
The experiment obtained 
 

 ( ) 5
2 9.5 1.6 10A

Q
−= − ± ×  

which implies 
 sin2θw = 0.20 ± 0.03 
In the electro-weak theory, the masses of w and z can be determined once sin2θw is 
known: 
 

 
2

2

2 2 2

2 sin

cos

w
F w

z w w

M
G

M M

πα
θ

θ

=

=

 (7.44) 

 
with sin2θw = 0.23, Equation 7.44 predicts Mw = 80 GeV and Mz = 92 GeV. 
 
The w and z bosons were observed in pp  collision at CERN in 1982: 
 
  d  
 p     u  
  u     u      e- 
    w-

  d    d     eν  
 p    u 
  u 
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  d  

p     u  
  u     u      e+

    z0

  u    u     e-

 p    u 
  d 
 
 
The observation of 0w z  and their production and decay characteristics 
dramatically confirmed the electroweak theory. 
 
Another important ingredient in the standard model, namely the Higgs particle, 
remains to be found. 
 
There are numerous examples of weak interactions and weak decays.  They can be 
characterized as proceeding via neutral current (NC), charged current (CC), or 
charged current plus neutral current (NC + CC).  Also, they can be classified 
according to whether they are purely leptonic, semi-leptonic, or non-leptonic.  An 
incomplete list follows: 
 
  Charged Current   Neutral Current   Charged/Neutral
 
 Leptonic    eµ νν→     e eµ µν ν→     e ee eν ν→  

  τ νν→     e e+ − +→ −     e ee e ν ν+ − →  
  e eµν µν→  
 
 Semi-leptonic    π→µν    νN → νN 
  D K ν→     e eD n pν ν+ → + +  
  n pe ν−→  
  N xµν µ−→  
 
 Non-leptonic    K → ππ    pp → pp    pn → pn 
  D → Kπ  
  Λ → pπ-
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In purely leptonic processes, only leptons appear in the interactions or decays.  For 
semi-leptonic processes, both hadrons and leptons participate.  In non-leptonic 
processes, only hadrons appear. 
 
 
Pure Leptonic Weak Interaction 
 
We consider the following reaction: 
 
 νee- → e-νe
 
This reaction can proceed via charged current as well as neutral current: 
 
 νe      e-     νe      e-

  K    p′       K    p′ 
 
     w        z0

 
  p    K′       p    K′ 
 e-      νe     e-      νe
 
 
This reaction was used to detect solar neutrino in several water Cherenkov detector 
experiments. 
 
We now consider the charged-current contribution to this process.  At low energy 
and intermediate energy, it is appropriate to adopt Fermi’s contact current-current 
interaction.  The invariant amplitude is 
 

 ( ) ( ) ( )( ) ( ) ( ) ( )( )51 1
2

G 5M u K u p u p u Kµ
µγ γ γ γ′ ′= − −  (7.45) 

 
To evaluate 2M , one needs M* which contains adjoint V-A current such as 
 

 
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

* †5 5

5

1 1

1

u K u p u K u p

u p u K

µ µ

µ

γ γ γ γ

γ γ

⎡ ⎤ ⎡ ⎤′ ′− = −⎣ ⎦ ⎣
′= −

⎦  (7.46) 

(Note that for S-P current, we have ( )( ) ( ) ( )( ) ( )
*5 51 1u K u p u p u Kγ γ⎡ ⎤′ ′− = +⎣ ⎦ ) 
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( )

2
2 2 51 1

2 4spin

GM M Tr pµγ γ= = −∑ ( )51 Kνγ γ ′−( )
( )5                                1Tr Kµγ γ× − ( )51 pνγ γ ′−( )

 (7.47) 

 
Note that in Equation 7.47, a factor of ½ is used instead of ¼ for the average of the 
initial spin states since νe is left-handed and is in a unique spin state (the electron is 
unpolarized and can be in either spin states). 
 
Noting ( )51Tr pµγ γ− ( )51 Kνγ γ ′−( ) 2Tr pµγ= ( )51 Kνγ γ ′−( )  
 
Equation 7.47 becomes 
 

 2 2M G Tr pµγ= ( )51 Kνγ γ ′−( )Tr Kµγ ( )51 pνγ γ ′−( )  (7.48) 
 
Some useful trace theorems are listed below: 
 
 1Tr Pµγ 2Pνγ( ) ( )( )1 2 1 2 1 24 P P P P P P gµ ν ν µ µν= + − i  (7.49) 
 
 1Tr Pµγ 5

2Pνγ γ( ) 1 24i P Pµανβ
α βε=  (7.50) 

 ( µανβε  is antisymmetric tensor for 0 ,  ,  ,  3ε α γ β≤ ≤ ,  
0123 1ε = −  and it changes sign upon permutation) 

 
Equations 7.49 and 7.50 give 
 

 
1Tr Pµγ 2Pνγ( ) 3Tr Pµγ 4Pνγ( )

( )( ) ( )( )1 3 2 4 1 4 2 332 P P P P P P P P⎡ ⎤= +⎣ ⎦i i i i
 (7.51) 

and 

 
1Tr Pµγ 5

2Pνγ γ( ) 3Tr Pµγ 4Pνγ( )
( )( ) ( )( )1 3 2 4 1 4 2 332 P P P P P P P P⎡ ⎤= −⎣ ⎦i i i i

 (7.52) 

 (note that ( )2µνλσ λ σ λ σ
µνκτ κ τ τ κε ε δ δ δ= − − δ ) 

 
Note that 
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 1Tr Pµγ 2Pνγ( ) 3Tr Pµγ
5

4Pνγ γ( ) 0=  (7.53) 
 
 symmetric WRT µν    antisymmetric WRT µν 
 interchange    interchange 
 
using Equations 7.51, 7.52, and 7.53 Equation 7.48 becomes 
 

 ( )( )
( )

2 2

2 2

64

      16      ignoring electron's mass

M G K P K P

G S

′ ′=

=

i i
 (7.54) 

 
In the C.M. frame, the differential cross-section is 
 

 ( )
2

2
2 2

1
64 4e e

d Gv e e M
d S
σ ν S

π π
− −→ = =

Ω
 (7.55) 

 
The angular distribution is isotropic, and the total cross-section is 
 

 ( )
2

e e
G Se eσ ν ν
π

− −→ =  (7.56) 

 
Note that in the lab frame, the angular distribution is no longer isotropic, due to the 
boost.  Hence the νee- → e-νe reaction can still be used to isolate νe originating from 
the sun (since  tends to move along the same direction as the incoming e−

eν ) . 
 
The cross-sections for the νµe- → µ-νe reaction, which can only proceed via charged 
current interaction, are identical to the CC part of νee- → e-νe and are given by 
Equations 7.55 and 7.56. 
 
We now consider another related reaction 
 
 e ee eν ν− −→  
 
The reaction proceeds via an intermediate w boson 
 
 eν      e-

  w-
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 e-     eν  
 
The ee e eν ν− −→  is related to ee e eν ν− −→  via crossing symmetry. 
 
Interchanging νe’s in the initial and final states in ee e eν ν− −→  would lead to 

ee e eν ν− −→ .  (PA ↔ -PD) 
 

 
( ) ( ) ( )
( ) ( ) ( )

22 2

2 2 2

A B D B C A

A C D C A B

S P P P P P P

t P P P P P P S

′ ′ ′= + = − + = − =

′ ′ ′= − = + = + =

t
 

 
Hence, s ↔ t would relate e ee eν ν− −→  to ee e eν ν− −→  .  Interchanging s ↔ t, 
Equation 7.54 becomes 
 

 (2 22 2 2 216 4 1 cosM G t G S )θ= = −  (7.57) 

(since ( )1 cos
2
St θ= − −  

 
The differential cross-section in the C.M. frame is 
 

 ( ) (
2

2
e 2 1 cos

16e
d G Se e
d
σ )ν ν

π
− −→ = −

Ω
θ  (7.58) 

 
and the total cross-section is 
 

 ( ) (
2

e
1

3 3e
G Se e e e )e eσ ν ν σ ν
π

− − − −→ = = → ν  (7.59) 

 
Equation 7.58 shows that the reaction is backward-peaked and the cross-section 
vanishes at θ = 0o.  This can be readily understood from helicity consideration.  In 
the C.M. frame 
 
 eν     e-

   in the initial state                    (7.60) 
 eν     e-

   in the final state for θC.M. = 0 
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Angular momentum conservation prohibits scattering to θC.M. = 0 
 
An intuitive interpretation for the factor ⅓ appearing in Equation 7.59 is that the 
figure in 7.60 shows that only the +1 of the three helicity states (+1,0,-1) of w can 
participate in the ee e eν ν− −→  reaction. 
 
Another reaction closely related to the e ee eν ν− −→  is 
 
 e ee e ν ν+ − →  
 
This reaction can be obtained from ee e eν ν− −→  by crossing νe with e-,  
i.e.  PA↔ -PC
 
 
Therefore,  ( ) ( ) ( )22 2

A B C B A DS P P P P P P′ ′ ′= + = − + = − = u  
 
Interchanging s ↔ u in Equation 7.54, we have 
 

 (2 22 2 2 216 4 1 cosM G u G S )θ= = +  (7.61) 

 (since ( )1 cos
2
su θ−

= +  

 
 
The differential cross-section is 
 

 ( ) (
2

2
2 1 cos

16e e
d G se e
d
σ )ν ν

π
+ − → = +

Ω
θ  (7.62) 

 
and the total cross-section is 
 

 ( ) ( ) (
2 1

3 3e e e e e
G se e e e e e )eσ ν ν σ ν ν σ ν ν
π

+ − − − − −→ = = → = →  (7.63) 
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Equation 7.62 shows that eν  in the e ee e ν ν+ − →  can not go to 180o.  Again, this can 
be understood by considering angular momentum conservation: 
 
 
 e+    e-

   in the initial state 
 eν     νe

 in the final state for θC.M. = 180o,  
 and is not allowed due to angular  
 momentum conservation 
 
 
Another reaction closely related to νee- → e-νe is the νed → e-u reaction 
 
 
 νe      e-     νe      e-

              
 
     w           w 
 
               
 d      u    e-      νe
 
 
 
The νed → e-u is a semi-leptonic process, but the cross-section is almost identical 
to that of νee- → e-νe.  The only difference is that νed → e-u also contains the cos2θc 
term to account for the mixing between d and s. 
 
 
Similarly, one can show that the νeu → e+d reaction is the analog of e e e eν ν + −→  
reaction. 
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We can summarize the above discussion with the following table.  If one considers 
only the charged current and set the Cabbibo angle θc to 0, then 
 

 
2

24
d G
d
σ s

π
=

Ω
    ( )

2
2

2 1 cos
16

d G s
d
σ θ

π
= −

Ω
    ( )

2
2

2 1 cos
16

d G s
d
σ θ

π
= +

Ω
 

 
 νee- → e-νe    e ee eν ν− −→     e ee e ν ν+ − →  
 νµe- → µ-νe    ee µν µ ν− −→     ee µµ ν ν+ − →  

 νed → e-u     eu e dν +→     (7.64) 
 ed e uν +→      eu e dν −→  
 νµd → µ-u     u dµν µ+→  

 d uµν µ+→      u dµν µ−→  
 
 
Note that in 7.64, an isotropic angular distribution is obtained if the initial colliding 
pair have identical helicities (both are left-handed, or both are right-handed).  If 
they have opposite helicity, then the cross-section is anisotropic and the integrated 
cross-section drops to ⅓ of the isotropic reactions. 
 
The table in 7.64 shows that there are no interactions between 

,  ,  ,  u d d uµ µ µ µν ν ν ν . 
 
 
Neutrino-Induced Deep-Inelastic Scattering (DIS) 
 
The underlying processes for neutrino induced DIS off a nucleon include: 
 

 
( )

( ) ( )

2

2

2
2

2

4

1 cos
16

d G sd u
d
d G su d
d

µ

µ

σ ν µ
π

σ ν µ θ
π

−

+

→ =
Ω

→ = +
Ω

 (7.65) 

 
It is useful to express Equation 7.65 in terms of Lorentz invariant quantities such as 

y, where p qy
p K

=
i
i

. In the c.m. frame, neglecting masses, we have 
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 ( ) ( )11 1 1 co
2

p K Kp q p Ky
p K p K p K

sθ
′− ′

= = = − = − +
ii i

i i i
 (7.66) 

 
Hence, 1 + cos θ = 2(1 – y) 
 

Also, 
2 sin 2 cos 4

1
4

d d d
d d
d dy

dyπ θ θ π θ π
σ σ

π

Ω = = − =

=
Ω

 (7.67) 

 
Equation 7.65 should be written as 
 

 
( )

( ) ( )

2

2

2
2

2

ˆ
4

1 cos
16

d G sd u
d
d G su d
d

µ

µ

σ ν µ
π

σ ν µ θ
π

−

+

→ =
Ω

→ = +
Ω

 (7.68) 

 
where ŝ  represents the Mandelstam parameter s in the νµd system.  Similarly, one 
can define t u . ˆ ˆ and 
 
For a DIS process 
 
   ν  µ 
 
    
 q  q′ 

p  x 
 
 

ˆˆ,  , ˆs t u  refer to the ν + q → µ + q′ subprocess, and s, t, u refer to the ν + N → µ + x 
process. 
 

 ( ) ( ) ( )
2ˆ ˆ ˆ ˆˆ 2 2 2a b a b a b a bs P P P P P xP x P P xs= + = = =i i i i  (7.69) 

 
where x is the fraction of proton’s momentum carried by the quark. Similarly, one 
can show that   t t  ˆ ˆ;  u xu= =
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Using Equations 7.66, 7.67, and 7.69, Equation 7.68 becomes 
 

 
( )

( ) ( )

2

2
2

     (same for )

1      (same for )

d G xsd u d u
dy
d G xsu d y u
dy

µ µ

µ µ

σ ν µ ν µ
π

σ ν µ ν µ
π

− +

+ −

→ = →

→ = − → d
 (7.70) 

 
Equation 7.70 corresponds to DIS on the quark which carries a fraction x of the 
nucleon’s momentum.  For DIS on a nucleon, one needs to take into account the 
probability that the quark carries a momentum fraction x.  Hence 
 

 ( ) ( ) ( ) ( )
2

21p
d G xs

pp x d x y u
dxdy µ
σ ν µ

π
− x⎡ ⎤→ = + −⎣ ⎦  (7.71) 

 
where the scattering off an antiquark is also considered. 
 
(Note that in Equation 7.71 there is no  factor, since it is a weak interaction and 
the coupling is not proportional to e.) 

2
qe

 
Similarly, for a DIS off a neutron, we have 
 

 ( ) ( ) ( ) ( )
2

21n
d G xsn x d x y u x

dxdy µ
σ ν µ

π
+

n
⎡ ⎤→ = + −⎣ ⎦  (7.72) 

 
Isospin symmetry demands dn (x) = up (x); ( ) ( )n pu x d x=  
 
For a scattering off an isoscalar target, which has an equal number of protons and 
neutrons (like d, 12C, 40Ca, . . . ), the DIS cross-section per nucleon is an average of 
Equations 7.71 and 7.72: 
 

( ) ( ) ( )( ) ( ) ( ) ( )(
2

21
2 p p p p

d G xsN x u x d x y u x d x
dxdy µ
σ ν µ

π
− ⎡ ⎤→ = + + − +⎣ ⎦)  (7.73) 

 
Similarly, 
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( ) ( ) ( )( ) ( ) ( ) ( )( )
2

21
2 p p p p

d G xsN x u x d x y u x d x
dxdy µ
σ ν µ

π
+ ⎡ ⎤→ = + + − +⎣ ⎦  (7.74) 

 
Note that the Nµν  DIS is obtained from the νµN DIS by s ↔ u interchange (or 1 ↔ 
(1 – y)2 interchange). 
 
Equations 7.73 and 7.74 show that a comparison between  
 

 ( )d N x
dxdy µ
σ ν µ−→  

and 

 ( )d N x
dxdy µ
σ ν µ+→  

 
allows a separation of Q (x) = u (x) + d (x) from the antiquark distribution 
( ) ( ) ( )Q x u x d x= + . 

 
 
Neutral-Current Weak Interaction 
 
For processes such as e eµ µν ν− −→  and eµ eµν ν+ +→ , only neutral-current 
contributes.  Similarly for reactions q qµ µν ν→  and q qµ µν ν→ . 
 
 νµ  νµ
 
 
 
 e-  e-

 (q)   (q) 
 
 
The invariant matrix element for q qµ µν ν→  can be written as 
 

 ( ) ( )5 51
2

q q
q V A q

GM u u u C Cµ
ν ν µγ γ γ γ⎡ ⎤ ⎡= − −⎣ ⎦ ⎣ u ⎤⎦  (7.75) 
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M contains two terms: 
 
  and L L L L L R Lq q q Rqν ν ν ν→ →  
 
Note that Equation 7.75 shows that the neutral-current for neutrino is purely left-
handed (since only left-handed neutrino is known to exist).  For quarks, the neutral 
current can be a mixture of V – A and V + A currents: 
 
 ( ) ( ) ( )5 51 1q q q q

q V A q q L q q Ru C C u u g u u g uµ µ µγ γ γ γ γ γ− = − + + 5
q  (7.76) 

 
 left-handed    right-handed 
 
where 

 ( ) (1 1 and 
2 2

q q q q q )q
L V A R V Ag C C g C C= + = −  (7.77) 

 
represent the V- A and the V + A component of the neutral current, respectively. 
 
Note that for V – A coupling:  q is left-handed, q  is right-handed 
 for V + A coupling:  q is right-handed, q  is left-handed 
 (see Equations 5.103 and 5.107) 
 
The expression for ν-induced neutral-current DIS on an isoscalar target is 
 

 
( ) ( ) ( ) ( )( ){

( ) ( ) ( )( )}

2
22

22

1
2

                                1

L

R

d G xsN x g Q x y Q x
dxdy

g Q x y Q x

σ ν ν
π

→ = + −

+ + −
 (7.78) 

 
For N xν ν→ , one interchanges s ↔ u (or 1 ↔ (1 – y)2). 
 

 
( ) ( ) ( ) ( )( ){

( ) ( ) ( )( )}

2
22

22

1
2

                                1

NC

L

R

d G xsN x g Q x y Q x
dxdy

g Q x y Q x

σ ν ν
π

→ = + −

+ + −
 (7.79) 

 
where 
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 ( ) ( ) ( ) ( )2 2 2 22 2          u d u
L L L R R Rg g g g g g= + = + d  (7.80) 

 
In the electro-weak theory, the values of the vector coupling f

VC  and axial-
coupling f

AC  are given as 
 
  (7.81) 3 22sinf

V f wC T Qθ= − f

 
 3f

A fC T=  (7.82) 
 
where Qf is the electric charge of the fermion, and 3

fT  is the third component of the 
weak isospin of the fermion.  Leptons and quarks form weak-isospin doublets as 
follows: 
 

  e u c t
e d

µ τν ν ν
µ τ− − −

⎛ ⎞⎛ ⎞⎛ ⎞⎛ ⎞⎛ ⎞⎛
⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜
⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠⎝s b

⎞
⎟
⎠

 
3 1

2fT =  for the upper members of the doublets and 3 1
2fT = −  for the lower 

members. 
 
 Table 7.83 
  Qf    3

fT     f
AC     f

VC  
 νe, νµ, ντ    0    + ½    ½    ½  
 e-, µ-, τ-    -1    1

2−     1
2−          ( )21 2sin  ~  0.032 wθ− + −  

 u, c, t    2
3+     1

2+     1
2+             ( )21 4 sin  ~  0.192 3 wθ−  

 d, s, b    1
3−     1

2−     1
2−        ( )21 2 sin  ~  0.342 3 wθ− + −  

 
 
 In table 7.83, the values for f

VC  were calculated using sin2θw = 0.231, determined 
from experiments. 
 
This table shows that for neutrinos, CA = CV = ½ , and 1 ,  02L Rg gν ν= = , reflecting 
that ν is left-handed. 
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It also shows that for e-, µ-, τ-, 10,  2V AC C = − , hence the neutral current in this 

case is almost purely an axial-vector coupling, with 1 1,  4 4
e e
L Rg g− + . 

 
A comparison between Equations 7.74 and 7.79 shows that the neutral current 
cross-section reduces to the charged current cross-section when 
 
 gL = 1, gR = 0 
 
 
We now revisit ν – e scattering taking into account the contribution of neutral 
current. 
 
First, we consider the νµe- → νµe- and eµ eµν ν− −→  reactions, which can only 
proceed via neutral current 
 

 
( ) ( )( )

( )( )

5

5

1
2

                                     

NC N

e e
e V A

Gm e e u u

u C C u

µ
µ µ ν ν

µ

ν ν γ γ

γ γ

→ = −

− e

 (7.84) 

 
where GN = GF = G 
 
Following procedures analogous to Equations 7.45 and 7.54, one obtains 
 

 
( ) ( )

( ) ( ) ( )

2
22 2

2 2 2 2

1

                          1
4

L R

e e e e
V A V A

d G se e g g y
dy

G s C C C C y

µ µ
σ ν ν

π

π

⎡ ⎤→ = + −⎣ ⎦

⎡ ⎤= + + − −⎢ ⎥⎣ ⎦

 (7.85) 

 

 ( ) ( ) ( ) (
2 2 21

4
e e e e
V A V A

d G se e C C y C C
dy µ µ
σ ν ν

π
)2⎡ ⎤→ = + − + −⎢ ⎥⎣ ⎦

 (7.86) 

 
Note that Equation 7.86 is obtained from Equation 7.85 by s ↔ u interchange (or  
1 ↔ (1 – y)2).  These two cross-sections are also related by e e

A AC C↔−  
interchange. 
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Integrating over y, Equations 7.85 and 7.86 become 
 

 ( ) ( 2
2

3
e e e e
V V A A

G se e C C C Cµ µσ ν ν
π

→ = + + )2

 (7.87) 

 

 ( ) ( 2
2

3
e e e e
V V A A

G se e C C C Cµ µσ ν ν
π

→ = − + )2

 (7.88) 

 
Since  (Table 7.83), we expect that 0e

vC ∼ ( ) ( )e e eµ µ µ µeσ ν ν σ ν ν→ →  (recall 

that ( ) ( )3cc cc
e e e ee e e eσ ν ν σ ν ν− − − −→ = → ). 

 
The ee eeν ν− → −  reaction contains contributions from neutral current as well as 
charged current: 
 
 νe          νe     νe           νe
                  
 
     z0   +  w 
 
              
 e-      e-     e-      e-

 
 
The corresponding amplitudes are 
 

 ( ) ( )( ) ( )( )5 51
2

NC e e
e e v A

GM e e e C Cµ
µν ν νγ γ ν γ γ→ = − − e  (7.89) 

 

 
( ) ( )( ) ( )( )

( )( ) ( )( )

5 5

5 5

1 1
2

                           1 1
2

CC
e e

GM e e e

G e e

µ
µ

µ
µ

ν ν γ γ ν νγ γ

νγ γ ν γ γ

→ = − − −

= − −

e
 (7.90) 

 
The negative sign for the CC diagram is due to the interchange of the outgoing 
fermions. 
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The second line in Equation 7.90 is obtained using the Fierz transformation, which 
relates the ‘charge-exchange ordering’ to ‘charge-retention ordering’.  (For a 
derivation of the Fierz theorems, see “Electroweak Interactions” by Peter Renton, 
Appendix E.) 
 
Adding the NC and the CC contributions, one has 
 

 ( )( ) ( ) ( )( )5 51 1
2

NC CC e e
V A

G 1M M e C Cµ
µνγ γ ν γ γ e⎡ ⎤+ = − + − +⎣ ⎦  (7.91) 

 
Equation 7.91 has a form analogous to Equation 7.84, except that 
 
  (7.92) 1          1e e e e e e

V V V A A AC C C C C C′→ = + → = +′

 
From Equations 7.87 and 7.92, we have 
 

 ( )
( )

( ) ( )( ) ( )
( ) ( )

2 2

2 2

1 1 1e e e eNC CC
V V A Ae e

NC e e e e
V V A A

C C C Ce e
e e C C C Cµ µ

σ ν ν
σ ν ν

+ + + + + + +→
=

→ + +

1
 (7.93) 

 
Similarly for ee eeν ν→ , we have 
 

 ( )
( )

( ) ( )( ) ( )
( ) ( )

2 2

2 2

1 1 1e e e e
V V A Ae e

e e e e
V V A A

C C C Ce e
e e C C C Cµ µ

σ ν ν
σ ν ν

+ − + + + +→
=

→ − +

1
 (7.94) 

 
Summarizing: 
 

Reaction    Current    Cross-section is proportional to

( ) ( )2 2e e e e
V V A AC C C C+ +e eµ µν ν− −→     NC     

e eµ µν ν− −→     NC    ( ) ( )2 2e e e e
V V A AC C C C− +  

e ee eν ν− → −     NC + CC    ( ) ( )( ) ( )2 2
1 1 1e e e e

V V A AC C C C 1+ + + + + +  

e ee eν ν− → −     NC + CC    ( ) ( )( ) ( )2 2
1 1 1e e e e

V V A AC C C C 1+ − + + + +  
 
Using 1

2
e
AC = − ,  (from Table 7.83), Equation 7.93 gives 0.03e

VC = −
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 ( )
( ) 6.3e ee e

e eµ µ

σ ν ν
σ ν ν

→
=

→
 (7.95) 

 
which is in good agreement with the experimental result: 
 

 
( )
( )

( )
( )

43 2

43 2

0.93 10 cm E 10 MeV
0.16 10 cm E 10 MeV

e ee e

e eµ µ

σ ν ν

σ ν ν

− − −

−− −

→ ×
=

×→
 (7.96) 

 
The contribution of neutral current, together with the interference between the 
neutral current and the charged current terms, increases the νee → νee cross-section 
significantly over the νµe- → νµe- (and ντe- → ντe-) cross-section.  This fact has an 
interesting consequence for neutrino oscillation.  When ν is propagating through a 
dense medium such as the sun and the earth’s core, the effective ‘index of 
refraction’ for νe is different from that of νµ and ντ.  This modifies the ‘potential 
energy’ of νe relative to νµ and ντ and effectively changes the mixing angle between 
νe and νµ (ντ).  One obtains 
 

 
2

2

2

tantan
1 sec

v
M

v
v

e

L
L

θθ
θ

=
⎛ ⎞− ⎜ ⎟
⎝ ⎠

 (7.97) 

 
θv is the mixing angle in vacuum 
 

 2
4           v e

e

EL L
m G

ν 2
n

π π
=
∆

=  (7.97) 

 
2m∆  is the mass difference squared,  is the electron density.  Equation 7.97 

shows that the mixing angle θ
en

v can be significantly amplified in matter (when 
2sec 1v

v
e

L
L θ → ).  This is the MSW effect. 
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The existence of the neutral current also leads to some parity violating γ* - z0 
interference effects.  We consider two examples: 
 
First consider the e+e- → µ+µ- reaction.  The contributing diagrams are 
 
 e+     µ+    e+     µ+

  γ*     +     z0

 
 e-     µ-    e-     µ-

 
 
For a pure EM interaction, the angular distribution is 1 + cos2θ c.m.  This can be 
understood from the consideration that the helicities of the e+, e-, µ+, µ- have the 
following four possible combinations (and angular distributions). 
 
 R L R Le e µ µ+ − + −→     (1 + cosθ)2

 R L L Re e µ µ+ − + −→     (1 – cosθ)2

 L R Le e Rµ µ+ − + −→     (1 + cosθ)2

 L R Re e Lµ µ+ − + −→     (1 – cosθ)2

 
With a pure vector coupling, these four processes have equal probability, and the 
angular distribution is ~ 1 + cos2θ (since the terms linear in cosθ cancel). 
 
When z0 term is included, the four processes no longer have equal weighting.  
Hence the angular distribution is now given by d d

σ
Ω  ~ 1 + a cosθ + b cos2θ, with 

a ≠ 0.  This Forward-Backward asymmetry is observed experimentally, and leads 
to a determination of sinθw, the weak coupling angle.  Another example is the 
parity violation, observed in e-N deep-inelastic scattering.  The eq → eq scattering 
has two terms: 
 
 e-      e-     e-      e-

     k k′    k k′     
 
     γ      +     z0

 
     p p′    p p′      
 q      q    q      q 
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 0z

M M Mγ= +  

 ( ) ( ) ( ) (2
2

1
q )M Q e u k u k u p u p

q
µ

γ µγ γ′ ′= −  

 
( ) ( ) ( )

( ) ( ) ( )

0

22
5

2 2

5

4cos

                               

2
ze e

V Az
z

q q
V A

g q q MgM u k C C u k
w q

u p C C u p

µν µ νµ

ν

γ γ
θ

γ γ

⎡ ⎛ ⎞−
′= − −⎢ ⎜ ⎟⎜ ⎟−⎢ ⎝ ⎠⎣

⎤′ − ⎦

M  

 
For 0

2 2 ,  z z
q M M  becomes 

 

 ( ) ( ) ( ) ( ) ( ) ( )0

2
5 5

2 24cos
e e q q
V A V Az

z

gM u k C C u k u p C C u p
wM

µ
µγ γ γ γ

θ
⎡ ⎤′ ′= − − −⎣ ⎦  

 

but 
2

2 28 cos2 z

G g
M wθ

=  (Equation 13.35 of H & M) 

 
Therefore, 
 

 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

0
5 5

5 5

5 5

2

1 1      2 1 1
2 2
1 1                  1 1
2 2

e e q q
V A V Az

e e
L R

q q
L R

M G u k C C u k u p C C u p

G u k C u k u k C u k

u p C u p u p C u p

µ
µ

µ µ

µ µ

γ γ γ γ

γ γ γ γ

γ γ γ γ

⎡ ⎤ ⎡′ ′= − −⎣ ⎦ ⎣
⎡ ⎤′ ′= − + +⎢ ⎥⎣ ⎦
⎡ ⎤′ ′− + +⎢ ⎥⎣ ⎦

⎤⎦

e

 

 
where 
 

 
          

          

e e e e e
L V A R V

q q q q q

A

q
L V A R V

C C C C C C

C C C C C C

= + = −

= + = − A
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( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

0
5 5

5 5

5 5

5 5

1 12 1 1
2 2
1 1                  1 1
2 2
1 1                  1 1
2 2
1 1                  1 1
2 2

e q
L Lz

e q
L R

e q
R L

e q
R R

M G u k C u k u p C u p

u k C u k u p C u p

u k C u k u p C u p

u k C u k u p C u p

µ
µ

µ
µ

µ
µ

µ
µ

γ γ γ γ

γ γ γ γ

γ γ γ γ

γ γ γ γ

⎡ ′ ′= − −⎢⎣

′ ′+ − +

′ ′+ + −

⎤′ ′+ + + ⎥⎦

 

 
Since  ( ) ( )5 52 1 1µ µ µγ γ γ γ γ= + + −  
 
we have 
 

 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2
5 5

2

5 5

5 5

5 5

1 11 1
2 2
1 1                  1 1
2 2
1 1                  1 1
2 2
1 1                  1 1
2 2

qQ e
M u k u k u p u p

q

u k u k u p u p

u k u k u p u p

u k u k u p u p

µ
γ µ

µ
µ

µ
µ

µ
µ

γ γ γ γ

γ γ γ γ

γ γ γ γ

γ γ γ γ

⎡ ′ ′= − − −⎢⎣

′ ′+ − +

′ ′+ + −

⎤′ ′+ + + ⎥⎦

 

 
where 
 

 
2

2

2Gqr
e

= −  

 

 2 21
4 spins

M M= ∑  

 
Only the ‘diagonal’ terms contribute to 2M , since the non-diagonal terms all 
contain factor of (1 – γ5)(1 + γ5) = 0.  Therefore, only four terms remain when one 

evaluates 2M . 
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 2 2 2 2 2

LL LL LR LR RL RL RR
M M M M M

→ → →
= + + +

RR→
 

 
First consider LL → LL 
 

 

( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

4 22
4

5 5

5 5

4 2 5
4

1  
4

1 1                   1 1
2 2

1 1                       1 1
2 2

1 1               1
4 16

e q
q L LLL LL

spin

e q
q L L

eM Q r C C
q

u k u k u k u k

u p u p u p u p

e Q rC C Tr k
q

µ ν

µ ν

µ

γ γ γ γ

γ γ γ γ

γ γ

→
= +

⎡ ⎤′ ′− −⎢ ⎥⎣ ⎦

⎡ ⎤′ ′− −⎢ ⎥⎣ ⎦

= + −

∑

( )51 kνγ γ ′−( )
( )5                           1Tr pµγ γ− ( )51 pνγ γ ′−( )

( ) ( )( )
4 2

4

4               e q
q L L

e Q rC C k p k p
q

′ ′= + i i

 

 (using Equation 12.29 of H & M) 
 
but ( )( ) 2

4
sk p k p′ ′ =i i  

 

Therefore, ( )
4 2 2

2 4

1  
64

e q
q L L

LL LL

d e Q r C C s
d s q
σ

π→

⎛ ⎞ = +⎜ ⎟Ω⎝ ⎠
 

 

using ( )
2

24 2 1 cos
4
sq t θ= = −  

 

 
( ) ( )

2

1 11 1 cos           1 cos
2 2

4                    
4

y y

d d e
dy d

θ θ

σ σ π α
π

− = + = −

= =
Ω

 

 
We have 
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 (
2 2

2  e q
q L L

LL LL

d Q r C C
dy sy
σ πα

→

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
)  (7.99) 

Similarly 

 (
2 2

2  e q
q R R

RR RR

d Q r C C
dy sy
σ πα

→

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
)  (7.100) 

 
Now, we consider LR → LR 
 

 

( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( )

4 22
4

5 5

5 5

4 2

4

1  
4

1 1                   1 1
2 2
1 1                       1 1
2 2

               4  

e q
q L RLR LR

spin

e q
q L R

eM Q r C C
q

u k u k u k u k

u p u p u p u p

e Q r C C k p k p
q

µ ν

µ ν

γ γ γ γ

γ γ γ γ

→
= + ×

⎡ ⎤′ ′− −⎢ ⎥⎣ ⎦

⎡ ⎤′ ′+ +⎢ ⎥⎣ ⎦

′ ′= +

∑

i i

 

 

but  ( )( ) ( )
22

22 21 1 cos 1 1
4 4 2 4
uk p k p s s yθ+⎛ ⎞′ ′ = = = −⎜ ⎟

⎝ ⎠
i i  

 

Therefore ( ) (
2 2 2

2  1e q
q L R

LR LR

d Q r C C y
dy sy
σ πα

→

⎛ ⎞
= + −⎜ ⎟

⎝ ⎠
)  (7.101) 

 

Similarly ( ) (
2 2 2

2  1e q
q R L

RL RL

d Q r C C y
dy sy
σ πα

→

⎛ ⎞
= + −⎜ ⎟

⎝ ⎠
)  (7.102) 

 
(Note that Equation 13.76 of H & M is incorrect.  It misses the y2 term.  
Fortunately, the final asymmetry is not affected by this error.) 
 
 
For an isoscalar target with u = d, and ignoring the antiquark contribution, 
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u d u d u d u d

RR RR RL RL LR LR LL
u d u d u d

RR RR RL RL LR LR

d d d d d d d d
dy dy dy dy dy dy dy dy

A
d d d d d d d
dy dy dy dy dy dy d

σ σ σ σ σ σ σ σ

σ σ σ σ σ σ σ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
+ + + − − − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠=
⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞

+ + + + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

LL
u d

LL L

d
y dy

σ⎛ ⎞ ⎛ ⎞
−⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ L

 
Using Equations (7.99) – (7.102), we obtain for the numerator of A (ignoring terms 
quadratic in r): 
 

  
( )

2

2

2

4 2 1 12 2
9 3 9 3

4 2 1 1      2 2 1
9 3 9 3

4 2 1 1      2 2
9 3 9 3

4 2 1 1      2 2
9 3 9 3

e u e d
R R R R

e u e d
R L R L

e u e d
L L L L

e u
L R

A r C C r C C
sy

r C C r C C y

r C C r C C

r C C r

πα ⎡⎛ ⎞⎛ ⎞ ⎛ ⎞= + + −⎢ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠⎣
⎛ ⎞⎛ ⎞ ⎛ ⎞+ + + − −⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
⎛ ⎞⎛ ⎞ ⎛ ⎞− + + −⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

⎛ ⎞ ⎛− + + −⎜ ⎟
⎝ ⎠ ⎝

( )21e d
L RC C y

⎤⎛ ⎞⎞ −⎜ ⎟ ⎥⎜ ⎟⎠⎝ ⎠ ⎦

 

 

 
{

( ) }

2

2

2 2

2 2 2
3

  1 2 2

e u e d e u e d
R R R R L L L L

u e d e u e d
R L R L L R L R

r C C C C C C C C
sy

y C C C C C C C C

πα ⎛ ⎞ ⎡ ⎤= − −⎜ ⎟ +⎣ ⎦⎝ ⎠

⎡ ⎤+ − − − +⎣ ⎦

 

 

 
( ) ({

( ) ( ) ( ) }

2

2

2

2 2 2 2 2
3

  1 2 2 2 2

e u d e u d
V A A A V V

e u d e u d
v A A A V V

r C C C C C C
sy

y C C C C C C

πα ⎛ ⎞ ⎡ ⎤= − + + −⎜ ⎟ ⎣ ⎦⎝ ⎠

⎡ ⎤+ − − + − +⎣ ⎦

)
 

 
where we use CR = CV – CA          CL = CV + CA
 

with the definition of 
( )
( )

1

2

2

2

e u d
A v v

e u d
v A A

a C C C

a C C C

= −

= −
 

 
then, we have numerator of 
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 ( )(
2

2
1 2 2 12

2 2 2 2 2 1
3
r )A a a a a y

sy
πα ⎛ ⎞ ⎡ ⎤= − − + − −⎜ ⎟ ⎣ ⎦⎝ ⎠

 (7.103) 

 
The denominator of A is simply 
 

 ( )
2

2
2

10 1 1
9

A y
sy
πα ⎛ ⎞ ⎡ ⎤= + −⎜ ⎟ ⎣ ⎦⎝ ⎠

 (7.104) 

 
where we ignore terms linear or quadratic in r.  This is justified since the 
numerator of A is linear in r and any term linear in r in the denominator only 
contribute to r2 in A and can be ignored. 
 

From Equations (7.103) and (7.104), we obtain (recall that 
2

2

2Gqr
e

−
= ) 

 

 ( )
( )

22

1 2 22

1 16 2
5 1 1

yGqA a a
e y

⎛ ⎞⎛ ⎞ − −
= +⎜ ⎟⎜ ⎟⎜ ⎟+ −⎝ ⎠⎝ ⎠

 

 
Finally, 

 

( )

( )

1

2 2

2

2

1 1 4 1 2   2 sin sin
2 2 3 2 3

3 20   1 sin
4 9

e u d
A V V

w w

w

a C C C

θ θ

θ

= −

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − − − − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦
⎛ ⎞= − −⎜ ⎟
⎝ ⎠

 

 
Similarly, 

 

( )

( )

2

2

2

2

1 1   2sin 2
2 2

3   1 4sin
4

e u d
V A A

w

w

a C C C

θ

θ

= −

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛= − + − −⎜ ⎟ ⎜ ⎟ ⎜⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝⎝ ⎠

= − −

1
2
⎞
⎟
⎠
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The muon decay, ee µµ ν ν− −→ + + , is an important example of purely leptonic 
decay.  The invariant matrix element is given as 
 

 ( ) ( ) ( ) ( ) ( ) ( )5 51 1
2

GM u k u p u p v kµ
µγ γ γ γ⎡ ⎤ ⎡ ⎤′ ′= − −⎣ ⎦ ⎣ ⎦  

 
where the 4-vectors correspond to  
 
 ( ) ( ) ( ) ( )ep e p k kµµ ν− ′ ′→ + +ν  
 
It is straight forward to obtain 
 

 ( )( )2 264M G k p k p′ ′= i i  
 
The decay width is given by 
 

 21
2

d M dQ
E

Γ =  

 
where the Lorentz Invariant Phase Space dQ is 
 

 
( ) ( ) ( )

( ) (
3 3 3

4 4
3 3 3   2

2 2 2 2 2 2
d p d k d kdQ p p k k

E w w
π δ

π π π
′ ′

′ ′= −
′ ′

)− −  

 
Integrating over the Delta function (see H & M 11.5 for details) one obtains 
 

 
2

2 2
3

43
12

d G Em E
dE mπ

′Γ ⎛ ⎞′= −⎜ ⎟′ ⎝ ⎠
 

 
and the decay width 
 

 
2 5

2
30

1
192

m d G mdE
dEτ π
Γ⎛ ⎞′Γ = = =⎜ ⎟′⎝ ⎠∫  

 
The decay width is proportional to the fifth power of the mass of the decaying 
particle. 
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Similar results can be obtained for other decays such as  
 
 ee ττ ν ν− −→  
 b cν −→  
 et be ν+→  
 
We consider next the π+ → µ+ + νµ decay, which is an example of semileptonic 
decay. 
 
As in cases which involve hadrons, we need to parameterize the hadronic weak 
current based on general principles. 
 
  d     µ+

 π+      π+ (q) → µ+ (p) + νµ (k) 
  u    νµ
 
The leptonic current is 
 
 ( ) ( ) ( )51u p v kµγ γ−  
 
The hadronic current can only be a combination of V and A (in order to make the 
invariant amplitude a scalar or pseudoscalar). 
 

 ( ) ( ) ( ) ( )51
2

GM f q u p v kµ
π µγ γ⎡ ⎤= −⎣ ⎦  

 
The only V or A which can be constructed from a single spin-0 object (like π) is qµ, 
and fπ represents the pion structure factor. 
 

 ( )2 2 2 24M G f m p kπ µ= i  
 
Note that the mass2 of muon enters.  For π+ → e+ + νe decay, the  term greatly 
reduces the decay probability. 

2
em
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222

2 2
2

1 1
8

mGP f m m
m

µ
π π µ

πτ π
⎛ ⎞

= = −⎜ ⎟⎜ ⎟
⎝ ⎠

 

and 

 
( )
( )

2 2
2 2

4
2 2 1.2 10e e e

P e m m m
m m mP

π

µ π µµ

π ν

π µ ν

+ +
−

+ +

→ ⎛ ⎞ ⎛ ⎞−
= =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟−→ ⎝ ⎠ ⎝ ⎠

×  

 
 
 e+    π+    νe
 
 
Since π+ has spin-0, and νe has negative helicity, e+ is required to be left-handed in 
order to conserve angular momentum.  e+ is therefore in the wrong helicity state, 
which inhibits the decay probability. 
 
Similar suppression is observed for k decays: 
 

 
( )
( )

52.1 10ek e

k µ

ν

µ ν

− −
−

− −

Γ →
= ×

Γ →
 

 
One can also compare the k µµ ν− −→  with µπ µ ν− −→ : 
 

 
( )
( )

22

2 2

22 2 2

1
sin
cos

1

k
c k k

c

m
mk f mR

f m m
m

µ

µ

π πµ µ

π

µ ν θ
θπ µ ν

− −

− −

⎡ ⎤⎛ ⎞−⎢ ⎥⎜ ⎟Γ → ⎝ ⎠⎢ ⎥⎣ ⎦= =
Γ → ⎡ ⎤⎛ ⎞−⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥⎣ ⎦

 

 
From the experimental value of R, one determines 
 

 1.28kf
fπ
=  

 
Another decay related to π → µν is 
 
 ττ π ν− −→  
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or 
 k ττ ν− −→  
 
The decay width is given as 
 

 ( )
22 2 3 2

21
16

G f m m
m

π τ π
τ

τ

τ π ν
π

− − ⎛ ⎞
Γ → = −⎜ ⎟

⎝ ⎠
 

 
Note that there is no helicity suppression in this decay, and  
 
 ( ) ( )kτ ττ π ν τ τ− − − −Γ → > Γ →  
 

from phase-space consideration (and the cabbibo angle θc and kf
fπ

 

considerations). 
 
Another example of semi-leptonic weak decay is 
 
 0π π ν+ +→  
or  ( )a bM M ν→  
 0k π ν+ +→  
 
Now, we have two spin-0 hadrons.  Therefore, we have two vectors, ka and kb, 
available for constructing the hadronic current: 
 
 ( )b a a a b bM J M N f k f kα α α= +  
 
One can also extend this to baryonic semileptonic decay 
 
 B B ν′→  
 
We now have two spin-½ Dirac particles.  One can form vector and axial-vector 
hadronic currents of various forms 
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vector: 

( ) ( )
( ) ( )
( ) ( )

u B u B

u B q u B

u B q u B

α

αν
ν

α

γ

σ

′

′

′

 

 

axial-vector: 

( ) ( )
( ) ( )
( ) ( )

5

5

5

u B u B

u B q u B

u B q u B

α

αν
ν

α

γ γ

σ γ

γ

′

′

′

 

 

 

( ) ( ) ( ) ( )
( ) ( )
( ) ( )

2 2
1 2 3

2 5 2 5
1 2

2 5
3

                    

                    

2B J B Nu B f q if q q f q q

g q ig q q

g q q u B

α α αν
ν

α αν
ν

α

γ σ

γ γ σ γ

γ

⎡′ ′= + +⎣

− −

⎤− ⎦

α

 

 
This concludes our discussion on weak interaction. 


