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Chapter 5 
 

Quantum Electrodynamics 
 
 
1.  EM Interactions of spin-0 Particles 
 
We now consider electromagnetic interactions involving spin-0 particles.  These 
particles are assumed to be structureless point-like charged particles.  We would 
like to describe scattering processes such as 
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or a fictitious ‘spinless’ electron scattering off a spinless electron or muon 
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To study the transition rate and cross section of these processes, we start by 
considering the lowest order perturbation theory.  The transition amplitude Tfi is 
given as 
 
 ( ) ( ) ( )4 *   fi fT i d x x x xφ ν φ= − i∫  (5.3) 
 
For spin-0 particles, the Klein-Gordon equation 
 
 ( ) ( )2 0m xµ

µ φ∂ ∂ + =  (5.4) 
 
gives the following plane-wave solutions 
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Interaction of a charged particle in an EM potential ( )0 ,  A A Aµ =
G

 is obtained by 
the substitution 
 
 i i eAµ µ µ∂ → ∂ +  (5.6) 
 
The Klein-Gordon equation becomes 
 
 ( ) ( )2 0V m xµ

µ φ∂ ∂ + + =  (5.7) 

where ( ) 2 2V ie A A e Aµ µ
µ µ= − ∂ + ∂ −  

 
Substituting Equation 5.7 into Equation 5.3 and ignoring the higher order (in e) 
term e2A2, we obtain 
 
 ( )*  fi f iT e A A dµ µ

µ µφ= − ∂ + ∂ 4xφ∫  (5.8) 
 
Integration by part changes the second term of Equation 5.8 into 
 
 ( ) ( )* 4 *   f i f i

4A d x A d xµ
µ µφ φ φ φ∂ = − ∂∫ ∫ µ

x

 (5.9) 
 
and Tfi can be written as 
 
 4fi

fiT i j A dµµ= − ∫  (5.10) 
 
where the transition current fijµ  between states i and f is 
 
 ( ) ( )*fi *

f i fj ieµ µ µ iφ φ φ φ⎡ ⎤= − ∂ − ∂⎣ ⎦  (5.11) 
 
Consider a 2 → 2 process such as spin-less e-µ- → e-µ- scattering 
 
PA    e-         e-    PC  ( ) ( )C Ai P P xfi

A C A Cj eN N P P eµ µ
−= − + i  

 or (5.12) 
        µ-         µ-  ( ) ( ) ( )1 C Ai P P x

A C A Cj eN N P P eµ µ
−= − + i  

PB            PD
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What is the EM potential Aµ generated by µ-?  The Maxwell Equation under the 
Lorentz condition, , becomes 0Aµ

µ∂ =
 
 2 A jµ µ=,  (5.13) 
 
The current jµ of the muon is analogous to that of the electron, and is given as 
 
 ( ) ( ) ( )

2
D Bi P P x

B D B Dj eN N P P eµµ −= − +  (5.14) 
Keeping in mind that 
  (5.15) 2 2iq x iq xe q e+ = −i, + i

 
The solution to Equation 5.13 can be obtained by inspection: 
 

 ( )22

1A j
q

µ µ= −  (5.16) 

where 
 q = PD – PB
 
The Transition amplitude becomes 
 

 ( ) ( ) ( ) ( )1 4
22

1  fiT i j x j x d
q

µ
µ

⎛ ⎞
= − −⎜ ⎟

⎝ ⎠
∫ x  (5.17) 

 
Substituting Equations 5.12 and 5.14 into Equation 5.17 and noting that 
 
 ( ) ( ) ( ) ( )4 44 2C A D Bi P P P P x

D C B Ae d x P P Pπ δ− + − = + −∫ i P−  (5.18) 
we obtain 
 ( ) ( ) ( )4 42fi A B C D D C B AT iN N N N P P P Pπ δ= − = + − − M  (5.19) 
where 

 ( ) (2A C B D

g
iM ie P P i ie P P

q
µ )νµν⎛ ⎞⎡ ⎤ ⎡ ⎤− = + − +⎜ ⎟ ⎣ ⎦⎣ ⎦⎝ ⎠

 (5.20) 

 
M is Lorentz invariant and called the ‘invariant amplitude’. 
 
For A + B → C + D, the transitions per unit time per unit volume is 
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2

fi
fi

T
W

T V
=
i

 (5.21) 

 
It can be shown that the transition time T and the volume V in Equation 5.21 cancel 
the delta function in Tfi specifically. 
 
 ( ) ( )4 4 2fi D C BT P P Pα π δ + − − AP  (5.22) 
and 
 ( ) ( ) (2 8 4 4 2  )fi D C B A D CT P P P P P P P Pα π δ δ+ − − + − −B A  (5.23) 
 
Consider the 0-th component of the delta function in Equation 5.23: 
 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( )
( )( )

2

E E2

2

2 E E E E

2  E E

sin E E22  E E   2  
E E

F I

F I F I

T
i t

F I T

F I

F I
F I

e dt

T

π δ δ

π δ

π δ

−

−

− −

= −

⎡ ⎤−⎣ ⎦= −
−

∫

i i

 (5.24) 

 
The first delta function in Equation 5.24 requires 
 

 
( )( )sin E E2

E E 2
F I

F I

T
T

⎡ ⎤−⎣ ⎦ =
−

 (5.25) 

 
and Equation 5.24 becomes 
 
 ( ) ( ) ( ) ( ) ( )22 E E  E E 2  E EF I F I F I Tπ δ δ π δ− − = −  (5.26) 
 
Similarly, one can show that 
 

 
( ) ( )( )( )( )( )

( ) ( )

2 4 4

4 4

2

2     

fi D C B A x

D C B A

T P P P P T L L

P P P P T V

α π δ

π δ

+ − −

= + − − i i

y zL
 (5.27) 
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To convert Wfi into the cross section, dσ, which characterized the effective area 
within which the A + B collision can lead to C + D, one needs to multiply Wfi by 
the number of final states and divide it by the initial flux: 
 

 
( ) ( number of final states
initial flux

fiW
dσ = × )  (5.28) 

 
Adopting the so-called covariant normalization for the Klein-Gordon equation 
 

 12E                   
V

dv N
v

ζ =∫ =  (5.29) 

 
The initial flux is therefore proportional to the number of beam particles passing 
through unit area per unit time, 2EA AV V , and the number of target particles per 
unit volume, 2EB/V. 
 

 Initial Flux = 2 2A B
A

E EV
V V

G
 (5.30) 

 
The number of final states in a volume V with momentum within α3P is  
V α3P/(2π)3.  Since there are 2E particles in V, we have 
 

 Number of final states / particle = 
( )

3

32 2
Vd P
π E

 (5.31) 

 
And the number of available final states for particles C, D scattered into α3PC, α3PD 
is 

 
( ) ( )

3 3

3 3  
2 2E 2 2E

C

C D

Vd P Vd P
π π

D  (5.32) 

 
Inserting Equations 5.21, 5.27, 5.19, 5.30, 5.32 into Equation 5.28, we finally 
obtain 

 
2M

d
F

σ = dQ  (5.33) 
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where 

 ( ) ( ) ( )
( ) ( )

3 3
4 4

3 32     
2 2E 2 2E

C
C D A B

C D

d P d PdQ P P P Pπ δ
π π

= + − − D  (5.34) 

 
is the Lorentz invariant phase space factor (αLips) and the flux factor F is 
 
  2E   2EA AF V B= i i  (5.35) 
in the lab frame. 
 
For a general collinear collision between A and B 
 

 ( )

( )
1

2 22 2

  2E   2E   2E   2E

   4 E E                                                
E

   4

A B A B A B A B

A B B A

A B A B

F V V V V

P
P P V

P P M M

= − = +

⎛ ⎞
⎜= + =
⎜
⎝ ⎠

⎡ ⎤= −⎣ ⎦

G G G G
i i i i

G
G G G

i

⎟
⎟

 (5.36) 

 
In the center-of-mass frame for the process A + B → C + D, one can show (Ex. 4.2 
of H & M) 
 

 2

1
4 4

fP
dQ d

Sπ
= Ω  (5.37) 

 S is the square of center-of-mass energy 
 
and from 5.36, 
 
 4 iF P S=  (5.38) 
 
where Pi, Pf are the initial and final 3-momentum in the C.M. frame. 
 
Equations 5.33, 5.37, 5.38 give the following important expression for the 
differential cross-section in the C.M. frame: 
 

 2
2

1   
64

f

CM i

Pd M
d S P
σ

π
⎛ ⎞ =⎜ ⎟Ω⎝ ⎠

 (5.39) 
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Note added: 
 
Here is the derivation for Equation 5.37: 
 

 ( ) ( ) ( )
( ) ( )

3 3
46 4 3 4

3 4 1 2 3 3
3 4

 2  
2 2E 2 2E

d P d PdQ P P P Pπ δ
π π

= + − −  

 
To evaluate dQ in the C.M. frame ( )1 2 3,  P P P P4= − = −

G G G G
, we first integrate over 

d3P4: 

 ( ) ( )3 3 4 3
32

3 4

E E
 

16 E E
W

dQ d P
δ

π
+ −

=  

 
where 1 2 3 4 . .E E E E EC MW S= + = + = =  
 
To proceed further, we need to express d3P3 in terms of dE3 and express E4 in 
terms of E3: 
 3 2

3 3 3 3 3 3E Ed P P dP d P d d= Ω = Ω  
 
since ( )2 2 2

3 3 3 3 3 3 3E E EP dP d P M= = +  
 

 ( )
1

2 2 2 2
3 4 3 3 3 4E E E EW M M+ − = + − + −W  

 
since 2 2 2 2

3 4 3 3 4 4,   E EP P M M= − = −  
 

Therefore 
( )

1
2 2 2 2

3 3 3 4 3 3

2
4

E E E

16 E

M M W P d d
dQ

δ

π

⎡ ⎤+ − + −⎢ ⎥⎣ ⎦= ∫
Ω

 

 

Now, ( )(
1

3 3
3

E E
E

dgd g
d

δ
−

⎤ =⎦∫  

 ( ) ( )
1

2 2 2 2
3 3 3 3 4E E Eg M M= + − + −W  
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 3

3 4

E1
E E

dg W
d

= + =
4E

 

Here ( ) 3
2. . 216 16

f
C M

P dP ddQ
W Sπ π

ΩΩ
= =  

 
Now, consider dQ in the lab frame: 
 
 P2 = (M2, 0) 
 
Integrating over d3P4, we have 
 

 ( )3 4 1 2 3 3
2

4

E E E  E
16 E

M P d d
dQ

δ
π

+ − − Ω
= ∫  

 
Now,  ( )4 1 3 2    since   0P P P P= − =

G G G G
 

 
 

2

4 1P P P3= −
G G G

 
 
 2 2 2 2

4 4 1 3 1 3E 2M P P PP cosθ= + + −  
 
For the δ-function, we have 

 ( ) ( )
1

2 2 2 2
3 3 4 1 3 1 3 1E E 2 cos Eg M P P PP θ= + + + − − − 2M  

 

 

1 3
3 4

33

1 3
1 2 4

3

E1 2E 2 cos 2E
E

E       E cos E

dg P
Pd

PM P

θ

θ

⎡ ⎤⎛ ⎞= + − ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞= + − ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 

 

Hence, ( ) 3
lab

2 1 3
1 2

3

E16 E cos

P ddQ
PM Pπ θ

Ω
=

⎡ ⎤⎛ ⎞+ − ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
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1.1 Mandelstam Variables 
 
 
Before examining the A + B → C + D process in some detail, it is useful to 
consider the variables specifying such a reaction.  There are various choices for 
variables, such as beam energy and scattering angle.  However, it is advantageous 
to specify variables which are Lorentz invariant quantities.  The Mandelstam 
variables (s, t and u) are defined as 
 

 

( ) ( )
( ) ( )
( ) ( )

22

2 2

22

     total C.M. energy squared

    four momentum transfer squared

A B C D

A C D B

A D C B

s P P P P

t P P P P

u P P P P

= + = +

= − = −

= − = −

 (5.40) 

 
Note that PA + PB = PC + PD. 
 
s, t, u are not independent variables, since 
 
 2 2 2 2

A B C Ds t u M M M M+ + = + + +  (5.41) 
 
If MA = MB = MC = MD = M (e-e- → e-e-, π+π+ → π+π+ for example), then in the 
C.M. frame we have 
 

 

( )
(
( )

2 2

2

2

4

2 1 cos

2 1 cos

s P M

t P

u P

)θ
θ

= +

= − −

= − +

 (5.42) 

 
where P is the 3-momentum in the C.M. frame, and θ is the C.M. scattering angle.  
Note that s > 0, t ≤ 0, u ≤ 0. 
 
The Mandelstam variables are very convenient in expressing one scattering process 
in terms of another related scattering process. 
 
If one expresses the amplitude M for the process 
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a)  PA + PB → PC + PD
as M (s, t, u), then the other related processes have the amplitudes as follows: 
b)  PA + PB → PD + PC   :   M (s, u, t) 
c)  PA + (-PC) → (-PB) + PD   :   M (t, s, u) 
d)  PA + (-PD) → PC + (-PB)   :   M (u, t, s) 
e)  (-PC) + (-PD) → (-PA) + (-PB)   :   M (s, t, u) 
 
As an example, take reaction a) as e-µ- → e-µ-, then 
 
a)  e-µ- → e-µ-   :   M (s, t, u) 
b)  e-µ- → µ-e-   :   M (s, u, t) 
c)  e-e+ → µ+µ-   :   M (t, s, u) 
d)  e-µ+ → e-µ+   :   M (u, t, s) 
e)  e+µ+ → e+µ+   :   M (s, t, u) 
 
 
1.2  Spinless e-µ- → e-µ- Scattering 
 
 
Now we consider the invariant amplitude M and the scattering cross-section for a 
‘spinless’ e-µ- → e-µ- process. 
 
 e-      e- 
PA        PC    Recall Equation 5.20 
 

PB      µ-      µ-   PD    ( ) ( )2A C B D

g
iM ie P P i ie P P

q
µ νµν⎛ ⎞⎡ ⎤ ⎡ ⎤− = + − +⎜ ⎟ ⎣ ⎦⎣ ⎦⎝ ⎠

 
  

 first eγ vertex      second eγ vertex 
   photon propagator 
 
 
 

 ( ) ( ) 1    A C B DM e P P P P
t

= − + +i i  (5.43) 

 
Now PA + PC = (PA + PB) + (PC – PB) = (PA + PB) + (PA – PD) 
 PB + PD = (PA + PB) – (PA – PD) 
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Therefore 
( ) ( )

( )

2 22

2

1 

    

A B A DM e P P P P
t

e s u t

⎡ ⎤= − + − −⎣

= − −

i⎦  (5.44) 

 
Equations 5.39 and 5.44 give 
 

 

( )

( )

2
4

2 2

22

2

1   
64

              
4

f

CM i

f

i

P s ud e
d s P

P s u
s P t

σ
π

α

⎛ ⎞−⎞ = ⎜ ⎟⎟ ⎜ ⎟Ω ⎠ ⎝

−
=

t ⎠  (5.45)  

 
At high energies, masses are neglected, Pi = Pf = P and 
 

 

( )
( )
( )

2 2

2

2

4 4

2 1 cos

2 1 cos

2s P M P

t P

u P

θ

θ

= +

= − −

= − +

�

 

Hence, 

 

( ) ( )
( )

( )
( )

( )
( )

( )

22 22 2

2 22 2

22 2

2 42

4 2 1 cos 3 cos
1 cos2 1 cos

2 2cos 2 1 cos 2
            

sin 22sin 2

P Ps u
t P

θ

2

θ
θθ

θ θ
θθ

⎡ ⎤+ +− +⎣ ⎦= =
−⎡ ⎤− −⎣ ⎦

+ +
= =

 (5.46) 

and 

 
22 2

2

1 cos 2 
4 sin 2CM

d
d s
σ α θ

θ
⎛ ⎞+⎞ = ⎜ ⎟⎟Ω ⎠ ⎝ ⎠

 

 
 
1.3  Spinless e-e- → e-e-

 
 
Now consider spinless e-e- → e-e- scattering.  There are two diagrams contributing 
to this process: 
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 e-      e-    e-         e-

PA        PC  PA PC
 + 
 e-      e-   e-        e-

PB        PD  PB PD
 
 
The first diagram is analogous to the diagram we considered earlier for e-µ- → e-µ-.  
The second diagram reflects the fact that one can not tell if PC originates from PA 
or from PB. 
 
The invariant amplitude is a sum of these two diagrams 
 

 ( ) ( )
( )

( ) ( )
( )

2 2
2 2

    
  A C B D A D B C

e e
D B C B

P P P P P P P P
iM i e e

P P P P
− −

⎡ ⎤+ + + +
− = − − −⎢ ⎥

− −⎢ ⎥⎣ ⎦

i i
 (5.48) 

 
Note that Me-e- is now symmetric with respect to the exchange of PC ↔ PD, as well 
as the exchange of PA ↔ PB.  This is a consequence that we assume e- is spinless 
and following Bose statistics.  Otherwise, the amplitude should be antisymmetric 
with respect to these exchanges. 
 
In terms of the Mandelstam variables, Equation 5.48 can be expressed as 
 

 2 2
e e

s u sM e e
t u− −

t− −⎛ ⎞ ⎛= − −⎜ ⎟ ⎜
⎝ ⎠ ⎝

⎞
⎟
⎠

 (5.49) 

 
The second term in Equation 5.49 is obtained by t ↔ u exchange in the first term, 
as one expects. 
 

 
( )222

4

4 sin
 

sinCM

d
d s

θσ α
θ

−⎛ ⎞ =⎜ ⎟Ω⎝ ⎠
 

 
 
1.4  Spinless e-e+ → e-e+

 
 
There are two diagrams contributing to this reaction: 
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 e-      e-    e-         e-

PA        PC  PA PC
 + 
 e+       e+   e+               e+

PB         e-  PD  PB e-   e- PD
(-PB)   (-PD)  (-PB) (-PD) 
 
 
 
The first diagram is the exchange diagram analogous to e-µ- → e-µ-.  The second 
diagram is an annihilation diagram.  Note that the e+ lines are replaced by e- lines 
with opposite momenta.  The corresponding invariant amplitudes are 
 

( ) ( )
( )

( ) ( )
( )

2 2
2 2

    
  A C D B A B D C

e e
D B C D

P P P P P P P P
iM i e e

P P P P
− +

⎡ ⎤+ − − − − +
− = − − −⎢ ⎥

− −⎢ ⎥⎣ ⎦

i i
 (5.50) 

 
At each vertex P + P′ corresponds to the incoming e- momentum P and the 
outgoing e- momentum P′. 
 
 
In terms of the Mandelstam variables, Equation 5.50 can be written as 
 

 

2 2

2 2        

e e

u s u tM e e
t s

s u t ue e
t s

− +

− −⎛ ⎞ ⎛= − −⎜ ⎟ ⎜
⎝ ⎠ ⎝
− −⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

⎞
⎟
⎠  (5.51) 

 
Equation 5.51 can be obtained from Equation 5.49 (e-e- → e-e-) by interchanging  
(s ↔ u). 
 
Although the annihilation diagram for e-e+ → e-e+ has a different appearance 
compared with the second exchange diagram in the e-e- → e-e- reaction, these two 
diagrams are actually related by the B ↔ -D interchange.  This can be seen 
graphically by interchanging B ↔ - D for the e-e- → e-e- diagram. 
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PA      PC      PA
  e-    e-        e-

         e-    PC
        e-    B ↔ -D     e- 
PB    e-     PD      -PD      e-

          -PB
 
   PA       PC
    e-     e-

 
    e-     e-

   -PD       -PB
 
which ends up as the annihilation diagram for the e-e+ → e-e+. 
 
It is interesting to note that the cross-section for e-e- → e-e- scattering (Equation 
5.49) diverges at θ = 0o and θ = 180o, corresponding to t = 0 and u = 0.  Since t and 
u are the invariant masses of the exchanged virtual photons for the two diagrams of 
the e-e- → e-e- scattering, a vanishing mass of the virtual photon implies that the 
range of the interaction becomes infinite.  Hence the cross-section diverges. 
 
For the annihilation diagram, the corresponding amplitude does not diverge, since 
the virtual photon has an invariant mass greater than 2Me and cannot be zero. 
 
 
2.  EM Interactions of spin-½ particles 
 
 
We follow a similar procedure as the spin-0 case to obtain the expression for the 
invariant amplitude. 
 
For a spin-½ charged particle interacting with an EM field, the Dirac equation 
 
 ( ) 0P mµ

µγ ψ− =  (5.52) 
 
becomes (after the P P eAµ µ→ + µ  substitution) 
 
 ( ) ( ) ( )0P m e A Vµ µ

µ µγ ψ γ ψ γ− =→ − = ψ  (5.53) 
where 
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 0V e Aµ
µγ γ= −  (5.54) 

 
The transition amplitude Tfi is given as 
 

 

( ) ( ) ( )
( ) ( )

4

4

4

    

    

fi f i

f i

T i x V x x d

ie x A x d x

i j A d x

µ
µ

µ
µ

ψ ψ

ψ γ ψ

+= −

=

= −

x∫
∫
∫

 (5.55) 

 
where the current density jµ for the i → f transition is 
 
 f ij eµ µψ γ ψ= −  (5.56) 
 
Now, consider the e-µ- → e-µ- scattering (with spin-½ e- and µ-) 
 
K      K′     Following similar steps as for the  
 e-    e-      Klein-Gordon equation, one can deduce 

 ( ) ( )( ) ( ) ( )( )2

ig
iM ieu K u K ieu P u P

q
µνµ

νγ γ
⎛ ⎞′ ′− = ⎜ ⎟
⎝ ⎠

 

 µ-    µ-    
P      P′     first eγ vertex    second µγ vertex 
         γ-propagator 
 
 
2.1  e-µ- → e-µ- Scattering 
 
 

 ( ) ( ) ( ) ( )2
2

1M e u K u K u P u P
q

µ
µγ′ ′= − γ  (5.58) 

 
For measurements using unpolarized e- and µ-, the scattering cross-section should 
be an incoherent sum over the various spin states of e-, µ-, and averaged over the 
initial e-, µ- spins: 
 

 
( )( )

2

spin spin
states states

1
2 1 2 1 4A B

2 21M M
S S

=
+ + ∑ ∑ M=  (5.59) 
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Equations 5.58 and 5.59 give 
 

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )
4 *2
4

1
4 spin

eM u K u K u P u P u K u K u P u P
q

µ ν
µ νγ γ γ γ′ ′ ′ ′= ∑  (5.60) 

 
2M  can be viewed as a contraction of two lepton tensors 

 

 
4

2
4

muon
e

eM L L
q

µν
µν=  (5.61) 

 
For the electron tensor, eLµν , we have 
 

 ( ) ( )( ) ( ) ( )( *

,

1
2

s s s s
e

s s

L u K u K u K uµν µ νγ γ′ ′

′

′ ′= ∑ )K  (5.62) 

 
Since ( ) ( )u K u Kνγ′  is a number, its complex conjugate is identical to its 
Hermitian conjugate.  Therefore 
 

( ) ( ) ( ) ( ) ( ) ( ) ( )0s s s s s su K u K u K u K u K u Kν νγ γ γ
++ +′ ′′ ′⎡ ⎤ = =⎣ ⎦

νγ ′ ′  (5.63) 
 
where we have used ( ) 0 0ν νγ γ γ γ

+
=  relation. 

 
 
Equation 5.63 shows that the operation of complex conjugate on ( ) ( )u K u Kνγ′  is 
simply equivalent to interchanging (K, S) and (K′, S′). 
 
 
From Equations 5.62 and 5.63, we obtain 
 

 ( ) ( )( ) ( ) ( )(
,

1
2

s s s s
e

s s
)L u K u K u K u Kµν µ νγ γ′

′

′′ ′= ∑  (5.64) 
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Each term on the right-hand side of Equation 5.64 is a product of two numbers.  It 
is useful to view Equation 5.64 in a somewhat different fashion: 
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )s s s s s s s su K u K u K u K u K u K u K u Kµ ν µ νγ γ γ γ′ ′ ′′ ′ ′ ′ ′⎡ ⎤ ⎡ ⎤= ⎣ ⎦ ⎣ ⎦  (5.65) 
 
Now, the right-hand side of Equation 5.65 corresponds to a product of a column    
4 x 1 matrix by a row 1 x 4 matrix: 
 

  (5.66) ( )

1

2
1 2 3 4

3

4

b
b

a a a a A B
b
b

⎛ ⎞
⎜ ⎟
⎜ ⎟ =
⎜ ⎟
⎜ ⎟
⎝ ⎠

i

 
One can invert the order of A and B, and Equation 5.66 becomes 
 

  (5.67) ( )

1 1 2 1 3 1 4 11

1 2 2 2 3 2 4 22
1 2 3 4

1 3 2 3 3 3 4 33

1 4 2 4 3 4 4 44

  

a b a b a b a bb
a b a b a b a bb

a a a a
a b a b a b a bb
a b a b a b a bb

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎜⎜ ⎟ =
⎜⎜ ⎟
⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠

i ⎟
⎟

Therefore 

 ( ) ( )

1 1

2 2
1 2 3 4 1 2 3 4

3 3

4 4

      r

b b
b b

A B a a a a T a a a a
b b
b b

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟= =
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

i i i  (5.68) 

 
Using Equation 5.68, Equation 5.65 becomes (after moving ( )su K′ ′  to the front) 
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ss s s s s s su K u K u K u K u K u K u K u Kµ ν µ νγ γ γ′ ′ ′ ′′ ′ ′ ′ γ⎡ ⎤= ⎣ ⎦  (5.69) 
 
Now we can use the completeness relation for the Dirac spinor 
 
 ( ) ( )s s

s

u K u K K′ ′

′

′ ′ ′=∑ M+  
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to evaluate Equation 5.64 and we obtain 
 

 
( ) ( ) ( ) ( )( )

,

1
2
1     
2

s s s s
e r

s s

r

L T u K u K u K u K

T K

µν µ νγ γ′ ′

′

′ ′=

′=

∑

( )M Kµγ+ ( )M νγ⎡ ⎤+⎣ ⎦

 (5.70) 

 
The evaluation of the eLµν  is now reduced to an evaluation of traces of products of γ 
matrices.  Several useful trace theorems as well as contraction theorems can be 
readily derived. 
 
Trace Theorems: 
 

 

( )
( )
( ) (

odd number of 0

4

4

r

r

r

T

T g

T g g g g

µ

µ ν µν

)g gµ ν λ σ µν λσ µλ νσ µσ νλ

γ

γ γ

γ γ γ γ

=

=

= − +

 (5.71) 

 
Contraction Theorems: 
 

 

4

2

4

2

g

µ
µ

ν µ ν
µ

ν λ µ νλ
µ

ν λ σ µ σ λ ν
µ

γ γ

γ γ γ γ

γ γ γ γ

γ γ γ γ γ γ γ γ

=

= −

=

= −

 (5.72) 

 
From Equation 5.71, the electron tensor becomes 
 

 
1
2e rL T Kµν ′= Kµγ( ) ( )

( )

2

2

1
2

     2

rM T

K K K K K K g M g

ν µ ν

µ ν ν µ µν µν

γ γ γ+

′ ′ ′⎡ ⎤= + − +⎣ ⎦i
 (5.73) 

 
Similarly, the muon tensor becomes 
 
 ( ) 22eL P P P P P P g M gµν

µ ν ν µ µν µν′ ′ ′⎡ ⎤= + − +⎣ ⎦i  (5.74) 
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and finally 
 

 
( )( ) ( )( ) (

( )

4
2 2

4

2 2 2

8

                     2

e )M K P K P K P K P M P P
q

M K K M M

′ ′ ′ ′ ′⎡= + −⎣

′ ⎤− + ⎦

i i i i i

i
 (5.75) 

 
A useful relation for carrying out Lepton tensor contraction is 
 
 0q L q Lµ ν

µν µν= =  (5.76) 
 
Equation 5.76 follows form current conservation since 
 

 
( ) ( ) ( )( )

0

0i K K x

j

u K u K e

µ
µ

µ
µγ

′− −

∂ =

′∂ =i  

 
Therefore 
 
 ( ) ( )( ) 0q u K u Kµ

µγ′ =  
 
and 
 
 0q Lµ µν =  
 
Equation 5.76 can also be proven by noting 
 

 
( ) ( )( ) ( )q u K u K u K qµ

µγ′ ′= ( )
( )   

u K

u K K′= K ′−( ) ( ) 0u K =
 

 (since K( ) ( ) ( )0;   m u K u K K′ ′− = ( ) 0m− = ) 
Hence 
 ( )u K K′ K ′−( ) ( ) ( ) ( ) ( ) ( ) 0u K u K mu K u K mu K′ ′= − =  
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We consider three limiting cases for e-µ- → e-µ- scattering: 
 
a)  M  >> m 
 
 e-      e-   For a very massive ‘µ-’, there is 
( )E, K

G
      ( )E, K ′

G
  no recoil, and the µ four-vector 

       in the final state remains (M, 0). 
 
(M, 0)      (M, 0)   Also, K K′ =

G G
 

 µ-      µ-

 
Note that in this case, C.M. frame is the same as lab frame. 
 
Recall Equation 5.75 
 

 
( )( ) ( )( ) (

( )

4
2 2

4

2 2 2

8

                     2

e )M K P K P K P K P M P P
q

M K K M M

′ ′ ′ ′ ′⎡= + −⎣

′ ⎤− + ⎦

i i i i i

i
 (5.75) 

 
To evaluate Equation 5.75, we note 
 

 

( ) ( ) ( )

2

2 2 22 2 2

2 2 222 2

E
E

E cos 2
2

2 1 cos 4 sin
2

2sin

K P K P M
K P K P M
P P M

K K K K K M K M K

q K K K K K K

θθ

θθ

′ ′ = =
′ ′= =

′ =

′ ′= − = + − = +

′ ′= − = − − = − − = −

i i
i i
i

G G
i i

G G

 (5.77) 

 
Equation 5.75 becomes 
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4
2 2 2 2 2 2 2 2 2

4 4

22 2 2 2

4
22 2 2 2

4 4

8 E E
16 sin

2

                                    2 sin 2
2

       E sin
2sin

2

eM M M m M M
K

M K m M

e M M K
K

θ

θ

θ
θ

⎡= + −⎣

⎤− + ⎥⎦

⎡ ⎤= −⎢ ⎥⎣ ⎦

m−

 (5.78) 

 
In the C.M. frame, the differential cross-section can be written as 
 

 
2 2

2 2 2
42 4

1 E 1 sin
64 24 sin 2

Kd m
d s K K

vσ α
θπ

θ′ ⎛= = −⎜Ω ⎝ ⎠
⎞
⎟  (5.79) 

 
where we have used the following relations 
 

 

( )2 2 2 2 2 2 2

2

E E 2 E 2 E

4

2s M K K M M m M M M

K vE

K K

eα π

= + − = − + + = + +

=

′ =

=

�

 

 
 
Equation 5.79 is the Mott scattering formula, representing the scattering of a spin-
½  charged particle off a static field. 
 
Note that at the relativistic limit, v → 1 and Equation 5.79 becomes 
 

 
2 2

2
4 4

E cos
24 sin 2

d
d K
σ α

θ=
Ω

θ  (5.80) 

 
In this case, electron is forbidden to scatter to 180o due to helicity conservation. 
 
b)  Muon can recoil, but E >> m and set m = 0 
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Equation 5.75 becomes 
 

 
( )( ) ( )( ) ( )

( )( ) ( )( ) ( )

4
2 2

4

4
2

4

8

8       2

eM K P K P K P K P M K K
q
e K K K P K P K P K P M K K

q

′ ′ ′ ′ ′⎡ ⎤= + −⎣ ⎦

′ ′ ′ ′⎡ ⎤= − + −⎣ ⎦

i i i i i

i i i i i i
 

 
where we have expressed P′ as P′ = K + P - K′, and used K2 = K′2 = 0. 
 
Using 
 

 
( )

2

2 2

2

2
,0

4EE sin 2

E E 2

qK K

P M

q

qv M

θ

′ = −

=

′= −

−′= − =

i

 

we obtain 
 

 
( ) ( )( )

4 22 2 2
4

4 2
2 2 2

4 2

8 1E E 2 E E2 2

8       2 EE cos sin
2 2 2

e qM M M M M M q
q

e qM
q M

θ θ

⎡ ⎤′ ′= − − + +⎢ ⎥⎣ ⎦

⎡ ⎤
′⎡ ⎤= −⎢ ⎥⎣ ⎦
⎣ ⎦

 (5.81) 

 
Finally, we obtain 
 

 
2 2

2
22 4

E cos sin
E 2 24E sin 2

d
d M

2

2
qσ α θ

θ
′ θ⎡ ⎤⎛ ⎞= −⎜ ⎟ ⎢ ⎥Ω ⎝ ⎠⎣ ⎦

 (5.82) 

 
(see pp. 131-132 of Halzen & Martin for the derivation of Equation 5.82 from 
Equation 5.81) 
 

Note that the 2sin
2
θ  term in Equation 5.82 allows the incident electron to scatter to 

180o.  This term is due to the magnetic moment of the muon, allowing spin-flip of 
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the incident electron.  This can be further illustrated by noting that for e-π- → e-π- 
scattering 
 

 
2

2
2 4

E cos
E 24E sin 2

d
d
σ α

θ
′⎛ ⎞= ⎜ ⎟Ω ⎝ ⎠

θ  (5.83) 

 
Note added: 
 
One can derive Equation 5.82 as follows: 
 
Equations 5.33, 5.35, give 
 

 

( )
( )

2
3

2
1 2 1 2 1 3 3

1 2 1 3 3 1 2 1

1 1 3 3 1

2

 
4 16 E E cos

E E cos E E cos
(since  E ,  E   when  0)

E Ecos 2Esin
2

lab

Md P
d Pm M P P

M P P M
P P m

M M

σ
π θ

θ θ

θθ

⎛ ⎞ =⎜ ⎟Ω ⎡ ⎤+ −⎝ ⎠ ⎣ ⎦
+ − = + −

= = →

= + − = +

 

but 

 
2

E E 2
qv M′= − = −  

and 
 2 24EE sin 2q θ′= −  
Therefore 

 

( )

( )

2
2

2
3

2
1 2

2 E E E2Esin 1
2 2E 2E E

 
E4 16 Elab

Mq M

Md P
d Pm M

θ

σ
π

′−− ⎛ ⎞= = = −⎜ ⎟′ ′ ′⎝ ⎠

⎛ ⎞ =⎜ ⎟Ω⎝ ⎠ ′

 

 
Using Equation 5.81, we obtain 
 

 
2 2

2 2
22 4

cos sin
2 2 24 sin 2lab

d E q
d EE M
σ α θ

θ
′ θ⎡ ⎤⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟ ⎢ ⎥Ω⎝ ⎠ ⎝ ⎠ ⎣ ⎦
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c)  Relativistic Limit (neglecting both m2 and M2) 
 
In this limit, Equation 5.75 simplifies to 
 

 ( )( ) ( )(
4

2
4

8e )M K P K P K P K P
q

′ ′ ′= +⎡⎣ i i i i ′ ⎤⎦  (5.81) 

 
Neglecting m2 and M2, the Mandelstam variables become 
 

 

( )
( )
( )

2

2

2

2 2

2 2

2 2

s K P K P K P

t K K K K P P

u K P K P K P

′ ′= + =

′ ′ ′= − − = −

′ ′ ′= − − = −

� i i

� i i

� i i

 

 
Equation 5.81 becomes 
 

 
2 2

2 4
22 s uM e

t
+

=  (5.82) 

 
and the C.M. cross-section is 
 

 
42

2
2 4

1 cos1 2
64 2 sin 2

f

CM i

Pd M
d s P s

θσ α
θπ

⎛ ⎞+⎛ ⎞ ⎜= =⎜ ⎟ ⎜ ⎟Ω⎝ ⎠ ⎝ ⎠

⎟  (5.83) 

 
where we use the following expressions in the C.M. frame: 
 
 s = 4K2    t = -2K2 (1 – cos θ)    u = -2K2 (1 + cos θ) 
 
Although one cannot check the expression for e-µ- → e-µ- scattering at the high 
energy limit, one can consider several related reactions which can be and have 
been studied experimentally. 
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c.1)  e-e+ → µ-µ+

 
The scattering amplitude for this process can be obtained from e-µ- → e-µ- by 
interchanging s ↔ t first, giving e-e+ →µ-µ+, followed by t ↔ u exchange, resulting 
in e-e+ → µ-µ+. 
 
Hence from Equation 5.82, one obtains for e-e+ → µ-µ+

 

 
2 2

2 4
22 u tM e

s
+

=  (5.84) 

 
The differential cross-section for e-e+ → µ-µ+ is 
 

 
( ) ( )

4 22 2
2

4

4 2 2cos
 1 cos

2 16 4e e

Kd
d s K sµ µ

θσ α α θ
− + − +→

+⎛ ⎞ = =⎜ ⎟Ω⎝ ⎠
+  (5.85) 

 
and the total cross-section is 
 

 ( )
24

3
e e

s
πασ µ µ− + − +→ =  (5.86) 

 

Both the (1 + cos2θ) angular distribution in Equation 5.85 and the 1
s

 dependence of 

the total cross-section in Equation 5.86 are well confirmed by experiments. 
 
 
c.2)  e e  qq− + →
 
This process is analogous to the e-e+ → µ-µ+ scattering.  An important difference, 
apart from the factor  for the quark charge, is the color factor of 3 to account for 
the 3 colors for the quarks. 

2
qQ

 

 
( )

( )

2
2

2 2

4 3
3

     3  

q

q

e e qq Q
s

Q e e

πασ

σ µ µ

− +

− −

→ = × ×

= × → +

 (5.87) 
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Experimentally, quark-antiquark pairs are not observed.  Instead, the hadrons into 
which the qq  hadronize are detected.  One can measure the R factor, defined as 
 

 
( )
( )

2
hadrons

3 q
q

e e
R Q

e e

σ

σ µ µ

− +

− + − +

→
=

→
= ∑  (5.88) 

 
Depending on the C.M. energy, various qq  channels may be open.  One expects R 
to be: 

 
2 2 22 1 13 2

3 3 3
R

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

=  

 if u, d, s quark pairs can be produced. 
 
If the C.M. is above the threshold for charm-quark pair production, then 
 

 
22 12 3

3 3
R ⎛ ⎞ 0
= + =⎜ ⎟

⎝ ⎠
 

and  (5.89) 

 
210 1 113

3 3
R ⎛ ⎞

3
= + =⎜ ⎟

⎝ ⎠
 

 once the bb  threshold is passed. 
 
The experimental data are in good agreement with the expectations from Equation 
5.89. 
 
Note that if there is no color factor of 3, the predicted R would be in a strong 
disagreement with the data. 
 
 
c.3)  ,   qq e e qq µ µ− + − +→ →  
 
This is the inverse reaction of  e e qq− + → .  It can be studied experimentally in 
hadron-hadron interaction, in which a quark from one hadron interacts with the 
antiquark in the other hadron.  This process is also called the Drell-Yan process. 
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The cross-section for this process is analogous to the e e qq− + → , with an important 
difference.  The color degree of freedom for the quarks / antiquarks implies that 
only q q−  with matched color (blue-antiblue, for example) can annihilate.  Hence 
the cross-section is 

 ( ) ( )
2

3
qQ

qq e e e eσ σ µ− + − + − +→ = → µ  (5.90) 

 
Also, the angular distributions show a 1 + cos2θ dependence.  Both the cross-
section and the 1 + cos2θ dependence have been verified experimentally. 
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2.2)  e-e- → e-e- Scattering (Møller Scattering) 
 
There are now two diagrams contributing: 
 
PA    PC    PA    PC
 
 
 
 
 
PB    PD    PB    PD
 
The scattering amplitude combines both contributions with a negative sign 
between them. 
 

 
( )( )

( )
( )( )

( )
2 2

2
C A D B D A C B

A DA C

u u u u u u u u
M e e

P PP P

µ µ
µγ γ γ γ

= − +
−−

2
µ  (5.91) 

 
M is antisymmetric with respect to interchange of identical fermions (A↔B, 
C↔D).  This reflects Fermi statistics.  For identical bosons, M is symmetric with 
respect to interchange of identical bosons. 
 
The contribution to 2M  from the first diagram is identical to that of e-µ- → e-µ- 
(Equation 5.82) 

 
2 2

2 4
2direct

2 s uM e
t
+

=  (5.92) 

 
The contribution from the second diagram is obtained from Equation 5.92 by t↔ u 
interchange: 

 
2 2

2 4
2exchange

2 s tM e
u
+

=  (5.93) 

 
The evaluation of the interference terms is as follows: 
 

 
( )( ) ( ) ( ) ( )2 4

interf.

Int. 1 Int. 21   
2 1 2 1A B

M e
s s tu

+
= −

+ +
 (5.94) 
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First interference term (Int. 1) is 
 

 
( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )
,
,

Int. 1

                 

s s
C A D B

s s

s s
A D B C

u K u K u P u P

u K u P u P u K

µ λ λ
µ

λ λ

ν λ λ
ν

γ γ

γ γ

′ ′

′
′

′ ′

′ ′=

′ ′

∑
 (5.95) 

 
One can interchange the second and third term of Equation 5.95, since both terms 
are just numbers.  Also, moving ( )s

Cu K′ ′  term to the front, one can evaluate the 
trace: 

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

,
,

Int. 1

                        

s s s s
C C A A D

s s

D B B

Tr u K u K u K u K u P

u P u P u P

Tr K

µ ν

λ λ

λ λ λ
µ ν

γ γ

γ γ

′ ′ ′

′
′

′

λ′ ′ ′⎡= ⎣

′ ⎤⎦

′=

∑

( )m Kµγ+ ( )m Pνγ ′+ ( )m Pµγ+ ( )m

Tr K

νγ⎡ ⎤+⎣ ⎦

′= Kµγ Pνγ ′ Pµγ ( )     neglecting mνγ⎡ ⎤⎣ ⎦

 (5.96) 

 
using contraction relations 
 
 aµγ b c 2 cµγ = − b a  
and 
 aµγ b 4a bµγ = i  
and the trace theorem 
 Tr a b 4a b= i  
 
Equation 5.96 becomes 
 

 

Int. 1 Tr K ′= Kµγ ( )2 P− Pµγ ′

        Tr K

⎡ ⎤⎣ ⎦

′= ( )( )( )2 4 K P P′− i

( )( )
2

        32

        8

K P K P

s

⎡ ⎤⎣ ⎦
′ ′= −

= −

i i
 (5.97) 

 
The second interference term (Int. 2) is identical to Int. 1, since (Int. 2)* = Int. 1 is 
a real quantity. 
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Collecting Equation 5.94 and Equation 5.97, we obtain 
 

 
2

2 4
int

4 sM e
tu

=  (5.98) 

 
From the e-e- → e-e- Møller scattering formula, one can readily obtain the e-e+ → e-

e+ Bhabha scattering formula by crossing (s ↔ u).  The scattering amplitudes for e-

e- → e-e-, e-e+ → e-e+, and e-µ- → e-µ- and e-e+ → µ+µ- can be summarized in the 
following table: 
 2 42M e  
 
 Forward    Interference    Backward

2 2

2

s u
t
+         

22s
tu

      
2 2

2

s t
u
+  

( ø )M ller
e e e e− − − −→     

 u ↔ t 
         (s ↔ u) 

e-e+ → e-e+    
2 2

2

s u
t
+     

22u
ts

    
2 2

2

u t
s
+  

e-µ- → e-µ-    
2 2

2

s u
t
+  

         (s ↔ t) 

e-e+ → µ+µ-    
2 2

2

u t
s
+  

 
2.3)  Helicity Conservation 
 
As discussed earlier, at high energy (E >> m), the following relation holds for the 
Dirac spinors: 
 

 ( ) ( ) ( )5 ˆ 0
ˆ  

ˆ0
p

u p p u p u p
p

σ
γ

σ
⎛ ⎞

Σ = ⎜ ⎟
⎝ ⎠

GG i
� i Gi

 (5.99) 

 
p̂Σ

G
i  is the helicity operator.  Equation 5.99 implies 
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( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

5

5

1  if  has helicity 1

1  if  has helicity 1

u p u p u p

u p u p u p

γ

γ

= + = +

= − = −
 (5.100) 

 

The ( 51 1
2 )γ±  become the helicity projection operators.  For example, from 

Equation 5.100, it follows that 
 

 ( ) ( ) ( )

( ) ( )

51 1 0 if  has helicity 1
2
                        if  has helicity 1

u p u p

u p u p

γ± = = +

= = −
 (5.101) 

 

Similarly (note that ( ) ( ) ( ) ( ) ( )5 5 51 1 11 1 1
2 2 2

u p u pγ γ γ⎡ ⎤ ⎡ ⎤− − = −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
.  Hence 

( ) ( )51 1
2

u pγ⎡ −⎢⎣ ⎦
⎤
⎥  has helicity = -1) 

 

 ( ) ( ) ( )

( ) ( )

51 1 0 if  has helicity 1
2
                        if  has helicity 1

u p u p

u p u p

γ+ = = −

= = +
 (5.102) 

 

Since ( ) (51 11  and 1
2 2 )5γ γ− +  project out the left- and right-handedness of u(p), 

we write 

 ( )51 1
2RU uγ= +      ( 51 1

2LU γ= − )u  (5.103) 

 
For the adjoint spinors 
 

( ) ( ) ( ) (5 5 5
0 0 0

1 1 11 1 1
2 2 2LU u u u u )51 1

2
γ γ γ γ γ γ

+
+ +⎡ ⎤= − = − = + = +⎢ ⎥⎣ ⎦

γ  (5.104) 

 
Similarly, 

 ( 51 1
2RU u )γ= −  (5.105) 
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For the positron spinor v(p), we have 
 
 ( ) ( )5 ˆ  v p p v pγ −Σ

G
� i  (5.106) 

 
at the high-energy limit.  The left- and right-handed spinors and their adjoints for 
the positrons are 
 

 
( ) ( )

( ) ( )

5 5

5 5

1 11                1
2 2

1 11           1
2 2

R L

R L

v v v

v v v v

γ γ v

γ γ

= − = +

⎛ ⎞ ⎛ ⎞= + = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (5.107) 

 
It is straightforward to show that 
 

 
( ) ( )

        
R L R

R R L L

u u u u u u

u u u u

µ µ

µ µ

γ γ

γ γ

= + +

= +
L  (5.108) 

and 
 R R Lv v v v v vµ µ

L
µγ γ γ= +  (5.109) 

 
Equations 5.108 and 5.109 show that at high energy, the helicity of electron and 
positron is conserved in an electromagnetic interaction: 
 
 R     R    L     L 
 e-     e-    e-     e- 

 
   γ*        γ* 
 
 
 R     R    L     L 
 e+     e+    e+     e+ 

 
     γ*         γ* 
 
 
 
Similarly, one can readily show 
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 R L Lv u v u v uµ µγ γ γ= + R
µ  (5.110) 

 
Equation 5.110 implies 
 
  L        R 
 e-      γ*    e-      γ* 
 
 e+        e+

  R       L 
 
 
Helicity conservation is a very useful concept for understanding the angular 
distributions of many electromagnetic interactions.  For example, consider the       
e- + e- → µ- + µ- scattering in the C.M. frame 
 
    µ-Jz′ = +1 
 
 e-          θ     e+

     Jz = +1 
 
  µ+

 
 
One possible helicity structure (    indicates the helicity of e ,  µ∓ ∓ ) is shown here.  
For a given scattering angle θ, there are four possible combinations for Jz and Jz′, 
namely Jz = ±1 ⊗  Jz′ = ±1.  The corresponding decay amplitude is ( )Jdλ λ θ′ , where 
λ, λ′ are the helicity of the virtual photon. 
 

Since 
( ) ( ) ( )
( ) ( ) ( )

1 1
11 1 1

1 1
1 1 1 1

1 cos 2

1 cos 2

d d

d d

θ θ θ

θ θ θ
− −

− − +

= = +

= = −
 

 
one can show that the angular distribution is an average of (1 + cos θ)2 and           
(1 – cos θ)2, or 1 + cos2θ, as in Equation 5.85. 
 
 
2.4  Compton Scattering and Pair Annihilation 
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As a final example for EM interaction involving spin-½ particle, we consider the 
Compton scattering γe- → γe- and the related pair annihilation e-e+ → γγ process. 
 
One diagram contributing to the Compton scattering is 
 
 γ     γ 
 
  e-

 
 e-     e-

 
 
Some new features are introduced in this diagram: 
a)  An external photon line is involved 
b)  An internal electron line (propagator) is involved 
 
 
External Photons 
 
We recall the Maxwell Equations: 
 

 
E      E 0

E0      

B
t

B B j
t

ζ ∂
∇ = ∇× + =

∂
∂

∇ = ∇× − =
∂

GG G G G
i

GG G G G G
i

 (5.111) 

 

The homogeneous equation 0B∇ =
G G
i  implies B A=∇×

GG G
 and E 0B

t
∂

∇× + =
∂

GG G
 

implies E 0A
t

⎛ ⎞∂
∇× + =⎜ ⎟∂⎝ ⎠

GG G
 and E A

t
φ∂

+ = −∇
∂

GG G
. 

 
Therefore, the homogeneous Maxwell Equations introduce the E.M. potential 

( ),A Aµ φ=
G

 from which the  and E
G

B
G

 fields can be calculated: 
 

           AB A E
t

φ ∂
= ∇× = −∇ −

∂

GGG G G G
 (5.112) 
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The inhomogeneous Maxwell equations can be written as 
 
 ( )2 A A jµ µ ν

ν
µ− ∂ ∂ =,  (5.113) 

where 
 ( ),  j jµ ζ=

G
 

 
(To obtain Equation 5.113, we substitute Equation 5.112 into E ζ∇ =

G G
i , for 

example.  We then have 

 ( )
( )

2
2

2

2 0 0 0

A
t

A
t t t t

A A jν
ν

φ ζ

φ φ φ ζ

∂
−∇ ∇ − ∇ =

∂
∂ ∂ ∂ ∂⎛ ⎞⇒ −∇ − − ∇ =⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

⇒ − ∂ ∂ =

GG G G
i i

GG
i

,

 

 

Similarly,  
( )2

                

)k k k

EB j
t

A A jν
ν

∂
∇× − =

∂
⇒ − ∂ ∂ =

GG G G

,
 

 
Equation 5.113 shows Maxwell equations satisfy charge conservation namely 
 
  (5.114) 2 2 0j A Aµ µ ν

µ µ ν∂ = ∂ − ∂ =, ,
 
By introducing the Field Strength Tensor, defined as 
 
 2F A Aµν µ ν ν µ= ∂ − ∂,  (5.115) 
 
the Maxwell equation can be expressed as 
 
 F jµν

µ
ν∂ =  (5.116) 

 

 

0
0

0
0

Ex Ey Ez
Ex Bz

F
By

Ey Bz Bx
Ez By Bx

µν

− − −⎛ ⎞
⎜ ⎟−⎜=
⎜ −
⎜ ⎟−⎝ ⎠

⎟
⎟

 (5.117) 
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For a given E and B, the potential Aµ is not uniquely determined: 
 
 A Aµ µ µχ′ = + ∂  (5.118) 
 
where χ is any function, then 
 

 
B A A A

A AE E
t t

χ

φ φ

′ ′= ∇× = ∇× +∇×∇ =∇× =

′∂ ∂′ ′= − −∇ = − −∇ =
∂ ∂

G G GG G G G G
G GG G G G

B
G

 (5.119) 

 
The freedom to choose χ allows us to simplify Equation 5.114 further by requiring 
 
   (Lorentz condition) (5.120) 0Aµ

µ∂ =
 
and Equation 5.114 becomes 
 2 A jµ µ=,  (5.121) 
 
For a free photon, jµ = 0, and we have 
 
 2 0Aµ =,  (5.122) 
 
Solutions for Equation 5.122 can be written as 
 
 ( ) iq xA N q eµ µε −= iG  (5.123) 
 
εµ is the polarization vector, and Equation 5.122 requires that q2 = 0 for Aµ in 
Equation 5.123, showing that the photon is massless. 
 
The Lorentz condition  further implies 0Aµ

µ∂ =
 
 0q qµ

µε ε= =i  (5.124) 
 
Equation 5.124 shows that εµ consists of only three independent parameters.  It is 
interesting that one can take advantage of an additional gauge freedom to remove 
yet another parameter in εµ.  One can make the following transformation for Aµ: 
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 A A Aµ µ µ µ′→ = + ∂ Λ  (5.125) 
 
Now, Λ, unlike χ in Equation 5.118, cannot be an arbitrary function of χ and it 
must satisfy 
 2 0Λ =,  (5.126) 
(since , as required by the Lorentz condition) 0Aµ

µ
′∂ =

 
A possible choice of Λ is a plane wave along qµ: 
 
 ( )          iq x iq x

qiaNe A N a eµ µ µε −′Λ = = +i i  (5.127) 
Now, 
 aqµ µ µε ε ε′→ = + µ  (5.128) 
 
and Equation 5.124 implies  
 
 2 0q q aq qµ µ

µ µε ε ε′ = + = =i  
 
Equation 5.128 shows that one can select a value for the parameter a to make 0ε ′  
vanish; 0 0ε ′ =  
 
The additional gauge freedom, Equation 5.125, therefore, reduces the number of 
independent parameters for εµ to 2.  If we define the coordinates such that the free 
photon is moving along the z-axis, namely, 
 
 ( )0;  0,  0,  q q qµ = 0

=

 (5.129) 
 
Then the conditions  imply that 00 and 0q µ

µε ε=
 
 0q ε =

GGi  
 
and εµ must be pointing in the plane perpendicular to photon direction of motion.  
In other words, the photons are transversely polarized.  For linearly transversely 
polarized photons, we have 
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 ε1 = (0, 1, 0, 0);  ε2 = (0, 0, 1, 0) 
 
and for circularly polarized photons, we have 
 

 
( ) ( )

( ) ( )

11 0,  1,  ,  0
2

11 0,  1,  ,  0
2

R

L

i

i

ε ε λ

ε ε λ

= = + = −

= = − = −

 (5.130) 

 
The circularly polarized photons satisfy the  
 
orthogonality relation: ( ) ( )*

λλε λ ε λ δ ′′ = −i  (5.131) 
and 
completeness relation: ( ) ( )*

,

ˆ ˆij i ji j
R L

q qλ λ
λ

ε ε δ
=

= −∑  (5.132) 

 
We now turn to the issue of electron propagator. 
 
We recall that for the Klein-Gordon equation, e.g. 
 
 ( )2 2m vφ φ+ = −,  
 
the corresponding propagator for a spin-0 particle is 
 

 2

i
2p m−

 (5.133) 

 
Analogously, for the Dirac equation 
 
 p( )m e Aµ

µψ γ ψ− = −  

 
the propagator for spin-½ particle is 
 

 i
p

i p

m
=

−
( )

2 2 2 2

s s

s

i u um

p m p m

+
=

− −

∑
 (5.134) 
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The summation over the spins in Equation 5.134 is a general feature for 
propagators with spins. 
 
Recall that the photon propagator 

 

( ) ( )
4

*

1
2 2

ig
i

q q

λ λ
µ ν

µν λ

ε ε
=

−
=
∑

 (5.135) 

where 

 ( ) ( )
4

* * * *

1

T T L L S S

T

λ λ
µ ν µ ν µ ν µ

λ
νε ε ε ε ε ε ε

=

= + +∑ ∑ ε  (5.136) 

 
where T, L, S signifies Transverse, Longitudinal, and Scalar (time-like) 
polarizations for the virtual photons. 
 
 For a massive vector boson (w±, z0), the corresponding equation is 
 
 ( ) ( )2 2 0M B Bν µ ν

ν+ − ∂ ∂ =,  (5.137) 
 
The corresponding propagator is 
 

 
( )

( ) ( )*
2

2 2 2 2

ii g p p M
p M p M

λ λ
µν µ ν µ ν

λ

ε ε− +
=

− −

∑
 (5.138) 

There are three helicity states for massive spin-1 bosons 
 

 
( ) ( )
( ) ( )

1

0

0,  1,  ,  0 2

,  0,  0,  

i

p E M

λ

λ

ε

ε

=±

=

= ±

=

∓
 (5.139) 

 

The completeness relation ( ) ( )*
2

p p
g

M
λ λ µ ν
µ ν µν

λ

ε ε = − +∑  (5.140) 

 
is used in Equation 5.138 to express the propagator in terms of the boson’s 
polarization vectors. 
 
Now, we are ready to consider the Compton scattering. 
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First, the Feynman diagram for the Compton scattering is 
 
  k         k′ 
  γ    εµ(k)      γ    εν*(k′) 

    ( )u     
( )2 2

i uu
p k m+ −
∑     (u) 

    ieγµ    e-

  e-    u       e-    u  
     p               p′ 
 
Comparing with the e-µ- → e-µ- diagram, which has internal photon propagator and 
external electron (rather than internal electron propagator and external photon), 
 
 e-       e-

  u     u  
   ieγµ

   

  
( )
( )

*
µ

µ

ε

ε
  

( ) ( )*

2

i

q

λ λ
µ ν

λ

ε ε∑
 

 
  u     u  
 µ-       µ-

 
 
the eeγ vertices has the form ( )*u ie µ

µε γ u  in both diagrams.  This similarity is 
manifested only after the propagator is expressed in terms of the spin-sum. 
 
There are two diagrams contributing to the γe- → γe- Compton scattering 
 
 k       k′    k    µε     *

νε     k′  

  µε      *
νε              

      +    
   p + k 
  u     u  
 p       p′    p      p′ 
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The invariant scattering amplitudes for the two diagrams are 
 
 

 ( )*
1

i p
im u ie ν

νε γ− =
k+( )

( )
( )2 2

m
ie u

p k m
µ

µγ ε
+

+ −
 (5.141) 

and 

 ( )2

i p
im u ie µ

µε γ− =
k′−( )m

p k

+

′−( )
( ) *

2 2
ie u

m
ν

νγ ε
−

 (5.142) 

 
m2 is obtained from m1 by 
 
 *          k k µ νε ε′↔ − ↔  
 
There is an interesting implication for gauge invariance.  Since µε  → µε  + akµ 
should not change physics.  m should be invariant under this transformation.  This 
implies that replacing µε  by kµ in m, m should vanish.  i.e.: 
 
 ( ) 0m kµ µε → =  (5.143) 
Similarly 
 ( ) 0m kν νε ′→ =  
 
It can be readily verified that ( )1 0m kµ µε → ≠ . 

Similarly, ( )2 0m kµ µε → ≠ . 

However, m = m1 + m2 satisfies ( ) 0m kµ µε → = . 
 
It is interesting to note that Compton scattering for a spin-0 particle, γπ+ → γπ+, 
contains three diagrams: 
 
 γ    γ    γ    γ    γ    γ 
 
 
 



P570  42 

     π+    π+    π+    π+    π+    π+

 
The third diagram, the contact interaction, has its origin in the e2A2 term: 
 
 ( ) 2 2

K GV ie A A eµ µ
µ µ− = − ∂ + ∂ − A  (5.144) 

 
The diagram for the contract interaction cannot be ignored.  In fact, one can show 
that the gauge-invariance ( ) 0m kµ µε → =  cannot be satisfied by the first two 
diagrams alone.  It is only satisfied after including the third diagram:   
 M = M1 + M2 + M3
 
Coming back to the γe- → γe- Compton scattering, we can evaluate m1 by ignoring 
the electron mass. At this high-energy limit, we have 
 
 * 2

1m e u pν
ν µε ε γ= k+( ) u sµγ  (5.145) 

 
Summing over the photon polarization and electron spin, and averaging over the 
initial spins, we have 
 

 
42

1 24
sem u p

s
νγ′= k+( ) s su u pµ

µγ γ k+( )(
,

)s

s s

uνγ
′

′
∑  (5.146) 

where we use 
 * gµ µ µ

λ

ε ε µ′ ′= −∑  

 
Equation 5.146 can be evaluated using trace theorems and contraction theorems: 
 

 

4
2

1 24
em Tr p
s

′=
2 p

νγ
′−
N p k+( ) pµγ

2 p

µγ
−

p
��	�


k+( )

4

2       e Tr p
s

νγ
⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

′= p k+( ) p p k+( )( )
 (5.147) 

 
The only term which survives in Equation 5.147 is 
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4
2

1 2

em Tr p
s

′= k p k( )

( )( )
4

4
2

8       2

,      
2 2

e p k p k e u
s s
s up k p k

⎛′= = ⎜
⎝ ⎠

⎛ ⎞′= = −⎜ ⎟
⎝ ⎠

i i

i i

⎞− ⎟  (5.148) 

 
2

2m  can be obtained from 2
1m  by s ↔ u interchange.  Therefore, 

 

 ( )2 2 4
2 1 2 sm m s u e

u
⎛ ⎞= ↔ = −⎜
⎝ ⎠

⎟  (5.149) 

 
The interference term can be shown to vanish.  Hence, we have 
 

 2 42 u sm e
s u

⎛= − −⎜
⎝ ⎠

⎞
⎟  (5.150) 

 
For the related pair annihilation process 
 
 e+e- → γγ 
 
the scattering amplitude is obtained from the 
 
 γe- → γe-

 
process by 
 k ↔ p′ 
 
At the high energy limit, the spin-averaged rate for e+e- → γγ is 
 

 2 42 u tm e
t u

⎛ ⎞= +⎜ ⎟
⎝ ⎠

 

 
 
 
This concludes our discussion on Quantum Electro Dynamics. 


