LETTERS

Impurity effects on electron-mode coupling in high-temperature superconductors

K. TERASHIMA¹, H. MATSUI¹, D. HASHIMOTO¹, T. SATO^{1,2}, T. TAKAHASHI^{1,2}*, H. DING³, T. YAMAMOTO⁴ AND K. KADOWAKI⁴

Nature Phys. 2, 27 (2006)

Group 12

Kenneth Schlax, Man-Hong Wong, Caizhi Xu, Yizhi You

Outline

- Background Information
- Experimental Method
- Results
- Implications/Citation Report
- Critiques
- Summary

Superconducting transition temperatures have progressed over the years

Structure of high T_c superconductors

What is the common structural unit of all cuprates?

• The CuO₂ plane!

• The cuprates are complex quasi-2D copper oxides with the CuO_2 plane as the common structural unit.

High T_c compounds are doped Mott insulators

La_{2-x}Sr_xCuO₄

When sufficient carriers are added, the charge carriers will become mobile The system will become a metal first, then a superconductor

s-wave vs. d-wave pairing

It was known quite early on that Cooper pairs in cuprates form spin singlet, so the spatial symmetry of Cooper pairs can only be s wave or d wave.

Wave function name	s-wave	d _x 2_y2
Schematic representation of $\Delta(k)$ in B.Z.	A Ky	

s wave: ∆(*k*) = constant.
 The gap function is isotropic.

•
$$d_{x^2-y^2}$$
 wave:
 $\Delta d_{x^2-y^2} = \Delta_0 (\cos k_x - \cos k_y)$

- $\Delta(k)$ is anisotropic.
- There are directions with zero gap (line nodes).
- The phase of $\Delta(k)$ changes.

There are many questions about the superconducting energy gap in high T_c superconductors

- Does the superconducting state have an energy gap? How big is it? What is its relation to the transition temperature T_c ?
- How to measure this experimentally?
- Scanning tunneling spectroscopy at 4.2K on cleaved Bi-2212 crystals with different dopings

Kink in high T_c superconductor

What is a kink?

•Different velocity near the fermi surface

The origin of the kink?

- •Electron-mode coupling?
- •Electron-phonon interaction?

Experimental Methods

- Measurements: High-resolution Angleresolved Photoemission Spectroscopy (ARPES)
- Angle resolution

ARPES conveys information about electron dispersion (*E* vs. *k*) and bandstructure

Courtesy: Ex7, IOP, CAS

ARPES outcome

Band structure & kink

Experimental details of ARPES

- Photon Source: *He I* α *Resonance Line* 21.218eV
- Energy resolution: 7-12 meV
- Angular resolution: 0.2 ° High resolution!
- Clean sample surface: *in situ cleaving of crystals in ultrahigh vacuum*

Primary Results

- Electron-mode coupling is distinguished from phonons as electron coupling method in high-T_c superconductors
 - Heavily dependent on the impurity element characteristics (Ni vs. Zn)
- Electron-mode coupling persists above T_c for Zn-substituted Bi-2122

ARPES intensity plots for Bi-2122

Comparative summary of MDCs for ARPES nodal and off-nodal intensity plots

(black lines on previous slide)

Notice the reduction of the kink in the off-nodal cut [g]. This indicates the strength of the effect of the Zn and Ni substitutions in the cuprate.

- Compare off-nodal cuts at T = 40K (left) and T = 120K (right).
 - Only Zn-substituted cuprate maintains kink above T_c
 - Indicates
 - (1) the importance of non-magnetic (Zn) vs. magnetic (Ni) substitution
 - (2) Strength of electron-mode coupling

Citation Report

- Number of citing articles: 36
- Journals: PRL, PRA, PRB, Nature
- Most discuss whether Cooper pairs bind from electron-phonon or magnetic excitations
- Debate still unresolved

Courtesy: Web of Knowledge

Article supporting electron-phonon coupling

PRL 101, 157005 (2008)

PHYSICAL REVIEW LETTERS

week ending 10 OCTOBER 2008

Isotopic Fingerprint of Electron-Phonon Coupling in High-T_c Cuprates

H. Iwasawa,^{1,2,*} J. F. Douglas,³ K. Sato,^{2,4} T. Masui,⁵ Y. Yoshida,² Z. Sun,³ H. Eisaki,² H. Bando,² A. Ino,⁶ M. Arita,⁷ K. Shimada,⁷ H. Namatame,⁷ M. Taniguchi,^{6,7} S. Tajima,⁵ S. Uchida,⁸ T. Saitoh,¹ D. S. Dessau,³ and Y. Aiura^{2,7,+}
¹Department of Applied Physics, Tokyo University of Science, Shinjuku-ku, Tokyo 162-8601, Japan
²National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568, Japan
³Department of Physics, University of Colorado, Boulder, Colorado 80309-0390, USA
⁴Faculty of Science, Ibaraki University, Mito, Ibaraki 310-8512, Japan
⁵Department of Physics, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
⁶Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
⁷Hiroshima Synchrotron Radiation Center, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
⁸Department of Physics, University of Tokyo, Tokyo 113-8656, Japan
(Received 16 June 2008; published 9 October 2008)

Angle-resolved photoemission spectroscopy with low-energy tunable photons along the nodal direction of oxygen isotope substituted $Bi_2Sr_2CaCu_2O_{8+\delta}$ reveals a distinct oxygen isotope shift near the electronboson coupling "kink" in the electronic dispersion. The magnitude (a few meV) and direction of the kink shift are as expected due to the measured isotopic shift of phonon frequency, and are also in agreement with theoretical expectations. This demonstrates the participation of the phonons as dominant players, as well as pinpointing the most relevant of the phonon branches.

Summary

- Performed ARPES measurements to determine the mechanism of superconductivity in high T_c cuprates
- CuO₂ superconductors were doped with Zn and Ni to determine the nature of the kink in ARPES data
- Kink remains for Zn cuprates, indicating the most probable cause is the electron-mode coupling
- Highly disputed: e-p or e-mode

Thanks for listening

Questions??

