SCALING LAWS FOR MELTING ICE AVALANCHES

B. Turnbull, Phys. Rev. Lett. 107, 258011 (2011)

Team 6 Kin Lam Matthew Lapa Kridsanaphong Limtragool Rachael Mansbach

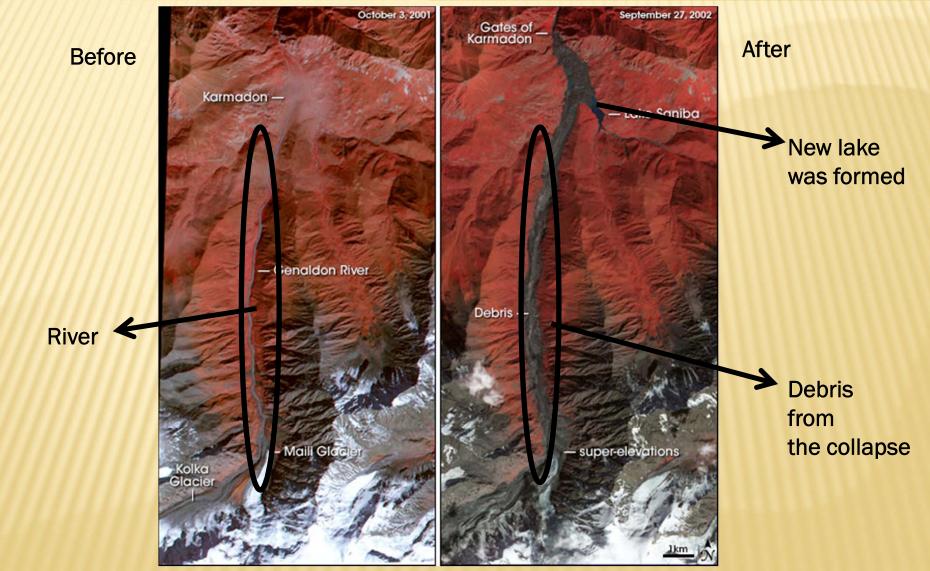
University of Illinois November 30, 2012

http://kiddiescornerdeals.com/wpcontent/uploads/2011/12/ice-age-a-verymammoth-christmas.jpg

OUTLINE OF THE TALK

- × Motivation
- Experiment and Method
- × Results
- × Critical Analysis and Impact
- × Summary

COLLAPSE OF KOLKA GLACIER

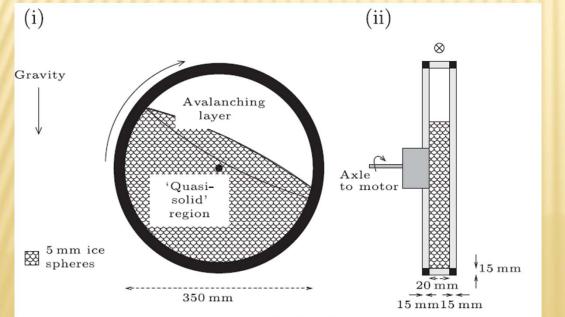


Satellite map of the Caucasus mountain range Kolka glacier is just west of Mt. Kazbek.

-Largest historically documented ice avalanche
-Caused the death of 140 people
-Destroyed important infrastructures
-Dammed several marginal lakes

http://earthobservatory.nasa.gov/Features/Kolka/ C. Huggel et al, Nat. Hazard Earth Sys. 5, 173 (2005).

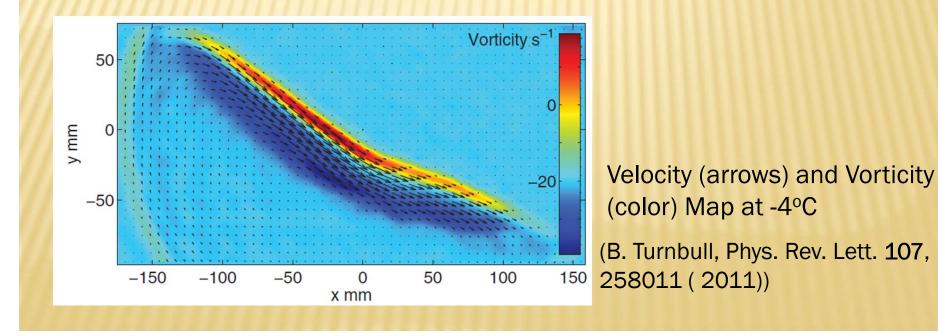
SATELLITE IMAGES TAKEN BEFORE AND AFTER THE COLLAPSE


http://earthobservatory.nasa.gov/Features/Kolka/

MODELING THE AVALANCHE

- Current models (dry granular flows and multiphase debris flows) can capture aspects of this avalanche but not the physics behind extraordinary flow rate
- Need a simple physical model to understand the process
- This paper tried to answer the question: What are the effects of interfacial melting to the flows?

AVALANCHES IN A DRUM


- Set-up: Narrow drum, 47% filled with ice particles
- Dripped water into liquid nitrogen to produce ice particles with ~5mm in diameter

(B. Turnbull, Phys. Rev. Lett. **107**, 258011 (2011))

OBSERVING MOTION OF ICE PARTICLES

- × Drum rotates slowly at 3.75s per revolution
- Record motion by high-speed video: 250-500 frames every 2 mins at 500Hz (experiment lasts for 45 mins)
- x Temperature bath: -4°C,-2°C, -1°C and 0°C

ANALYSIS BASED ON SEVERAL ASSUMPTIONS

- × Velocity of particles change slowly ~O(minute)
- Shape of particles not change systematically before and after the experiment
 + change in shear layer velocity due to melting alone

DETERMINE PHYSICS BY DIMENSIONAL ANALYSIS

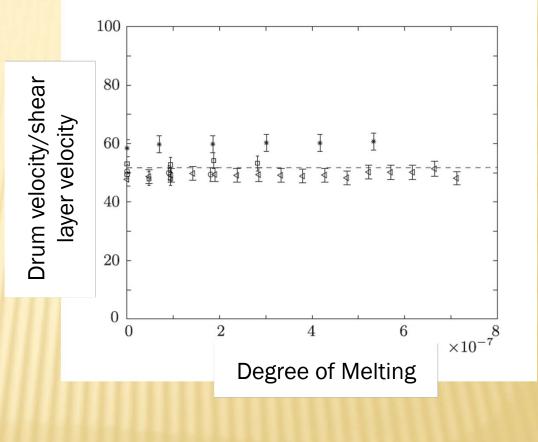
- Buckingham π Theorem: n variables in m dimensions, physical equation can be expressed in (n-m) dimensionless variables
- × 8 variables and 2 dimensions (length and time) in this system, 6 groups of parameters

TWO KEY DIMENSIONLESS PARAMETERS

- × Dimensionless wetting:
 - + Increases with time, decreases as energy increases

$$m = \frac{\tau \, d_p^2 \Omega^3}{E}$$

,where $\tau\Omega$ is the dimensionless time and $\frac{E}{d_p^2\Omega^2}$ is the dimensionless energy associated with melting

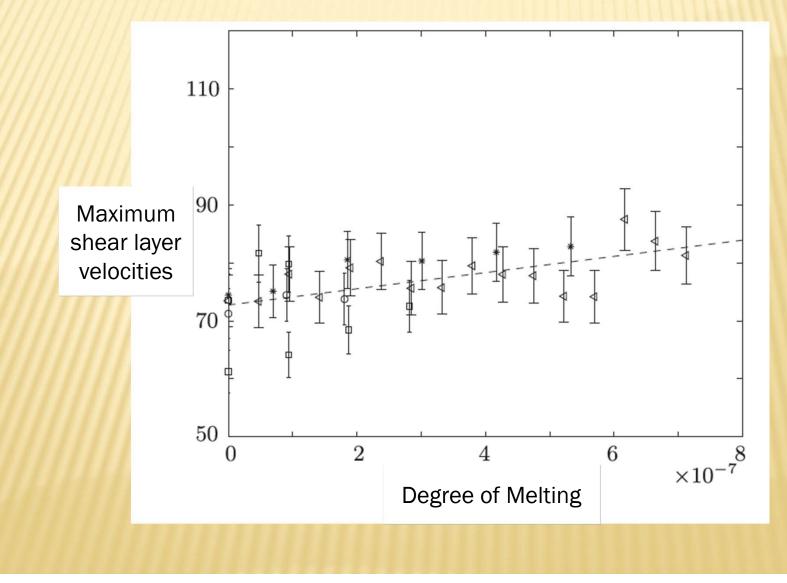

- Froude number:
 - + Characteristic velocity scale divided by shear layer wave velocity

$$F = \frac{u_s}{(h_s g \sin \alpha)^{1/2}}$$

STUDY FOUND SEVERAL QUANTITIES WERE INTERDEPENDENT

Drum and shear
 layer velocities

 Particle diameter and shear layer thickness



(B. Turnbull, Phys. Rev. Lett. **107**, 258011 (2011))

APPLICABILITY TO PHYSICAL SYSTEMS

- × Experimental Froude Number Range: 1.4-1.6
- Physical Froude Number Range (Avalanches): 1-5
- Scaling laws valid for large physical flows
 Perhaps not for all flows?

MAXIMUM SHEAR LAYER VELOCITY INCREASES WITH DEGREE OF MELTING

CONCLUSIONS

- Found a linear fit which is probably not accurate
 - + Serves to demonstrate trend
- Melting increases shear velocity
- × Greater velocities lead to greater melting
- Timescale of experiment short compared to physical timescales
 - + i.e. timescale for bulk melting
- × Only describes quasigranular regime

WAYS PAPER EXPANDS PREVIOUS WORK

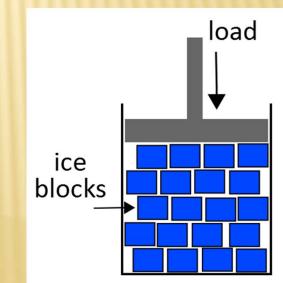
 Generalizes drum model to real physical situation

 Uses ice particles rather than numerical simulations or beads and oil

INCONSISTENCIES FOUND WHEN COMPARING WITH PREVIOUS WORK

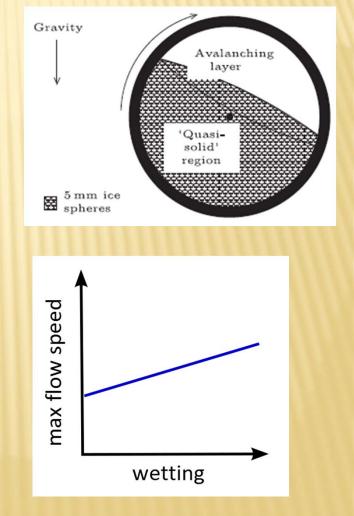
× Older work suggests drum geometry not applicable to "rough incline geometry" + i.e. not generalizable to physical systems × Cited work old (2002-2003) × Three regimes, but only investigates one + Granular + Correlated + Viscoplastic

CRITICAL ANALYSIS 1: INTEREST AND IMPACT


- Trying to hook in the wrong audience. Paper is mostly of interests to scientists studying smallscale granular flows.
- Main physical result (flow speed proportional to wetting) is fairly obvious.
- Impact on the problem of avalanche prediction/prevention?

CRITICAL ANALYSIS 2: EXPERIMENT AND SCALING ARGUMENTS

- × Dependence of incline angle α on the drum rotation rate Ω, drum length scale D, and filling fraction φ?
- Should test the dependence of the maximum shear flow velocity on each variable appearing in the dimensionless wetting (they only vary temperature).


WORK SINCE...

- × As of 2012/11/13, has been cited 3 times.
- Mentioned in a review article on wet granular materials (Herminghaus 2012).
- Stack of ice blocks subjected to a load and contained in a vertical cylinder (Laroche 2012).
- Rotating drum experiments with solid particles in various liquids (Leuptow 2012).
- Future work doesn't relate to shear flow of melting particles.

SUMMARY

- Investigated flow properties of the melting surface layer of avalanching ice particles.
- Postulated and confirmed the dependence of the maximum shear flow velocity on a set of dimensionless parameters.
- Maximum shear flow velocity increases linearly with wetting of the ice particles in the shear layer.

