Extreme Quantum Entanglement in a Superposition of Macroscopically Distinct States

By N. David Mermin

Kiel Williams, Chris Zeitler, John Yoritomo

Quantum Conflicts with Locality

- Quantum entanglement
 - Correlated spins between separate particles
- Local hidden variable predictions diverge with quantum probabilities
- Experimental analysis of spatially separate particle spin states

Einstein, Podolsky and Rosen Believe Quantum Mechanics Incomplete

- Entanglement requires either
 - Interactions between separated particles
 - Measurement outcomes encoded before separation
- Einstein rejects the first option in favor of locality
- Later, local hidden variables proposed to make a deterministic theory without entanglement

Bell's Theorem Distinguishes Hidden Variable Theories and Quantum Mechanics

- In 1964, John Bell described a measurement which distinguishes quantum mechanics from hidden variable theory
- Typically shown with two particle entanglement
- This difference is statistical in nature (1/3 vs. 1/4)

No variable is hidden from John Bell's gaze

Model Experiment for Testing Bell's Inequality

A Greenberger-Horne-Zeilinger State consists of n entangled particles

- Each particle is a two-level system, such as photon polarization or spin states
- For n=3, with $|0\rangle$ the first state and $|1\rangle$ the second state,

$$|\phi>_{GHZ} = \frac{|000>+i|111>}{\sqrt{2}}$$

- Key feature of GHZ state: measurement of any particle leaves the system unentangled
- Mermin's paper focuses on applying hidden variables to this state

GHZ States & Classical Conflict

- GHZ spin states create "all-or-nothing" locality test
 - Need ideal detectors...
- ...but GHZ states permit arbitrarily-large AM/locality deviation
- "Cooking-up" appropriate n-spin operators shows this explicitly

Compute Traditional Quantum Expectation Values

• Imagine operator \hat{A} with spin eigenstates $|\Phi\rangle$ such that, for n particles:

$$\widehat{A} = \frac{1}{2i} \left[\prod_{j=1}^{n} (\sigma_x^j + i\sigma_y^j) - \prod_{j=1}^{n} (\sigma_x^j - i\sigma_y^j) \right]$$

$$\langle \Phi | \hat{A} | \Phi \rangle = 2^{n-1}$$

Correlation measurements make this expectation value experimentally accessible

Results with Local Variables Theory

• If we have a set of local variables λ then our eigenvalues for operator \hat{A} are:

$$\langle \hat{A} \rangle = 2^{n/2}$$
 (even n)

$$\langle \hat{A} \rangle = 2^{(n-1)/2} \pmod{n}$$

With imperfect detectors, these become inequalities:

$$\langle \hat{A} \rangle \le 2^{n/2}, \quad \langle \hat{A} \rangle \le 2^{(n-1)/2}$$

No Limit to Quantum/Local Variables Theory Disagreement

- Exponential divergence between QM and local variables formulation
- "No limit" to the amount of possible disagreement
- Overall state is "macroscopically-distinct" definitely spin-up or spin-down

How has the paper impacted the physics community?

The paper has been cited ~570 times

Significant Citations: Experimental Realization

- "Experimental test of quantum nonlocality in three-photon Greenberger-Horne-Zeilinger entanglement" by Pan et al. in *Nature*, 403 (2000)
 - Experimental confirmation of quantum predictions for Greenberger-Horne-Zeilinger states by measuring the polarization correlations between three entangled photons
- "Experimental entanglement of four particles" by Sackett et al. in Nature, 404 (2000)
 - Implemented an entanglement technique to generate entangled states of two and four trapped ions
 - Technique enabled multi-particle entangled states to be created with vastly greater stability and certainty than existing experimental methods.

What about developments in more recent years?

- "Preparation and measurement of three-qubit entanglement in a superconducting circuit" by DiCarlo et. al in *Nature*, **467** (2010)
 - Most cited paper since 2010 (148 times), the year with the most papers to cite Mermin's paper.
 - First to experimentally achieve entanglement in a superconducting circuit with more than two qubits (three in this case).
 - Marked a new direction of research

 "Deterministic entanglement of superconducting qubits by parity measurement and feedback" by Ristè et al. in *Nature*, October 2013

Critiques And Conclusions

- Critiques:
 - Ignores time dependence of local variables
- Conclusion: The prediction of hidden variable theory and quantum mechanics diverge exponentially with particle number.