Small vertical movement of Kv measured with LRET

Zeng, Zhang Zhao

Controversy

LRET

The donor an acceptor

Applications

Impacts

Small vertical movement of a K⁺ channel voltage sensor measured with luminescence energy transfer Selvin, et al., doi:10.1038/nature03819

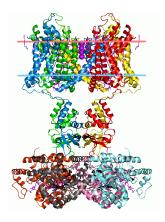
Jiancong Zeng, Matt Zhang, Chenchao Zhao

University of Illinois at Urbana-Champaign

December 5, 2013

Voltage-gated potassium (Kv) channels

Small vertical movement of Kv measured with LRET


Zeng, Zhang Zhao

Controversy

LRE'

Introduction The donor and acceptor Energy transfer Applications

Impacts

Figure : Kv channels respond to transmembrane voltage.

Crucial roles in

- neuron firing,
- muscle contraction,
- hormone release, etc.

Controversy arose

Small vertical movement of Kv measured with LRET

Zeng, Zhang, Zhao

Controversy

LRE[®]

- Introduction The donor an
- acceptor Energy transfe

Applications

Impacts

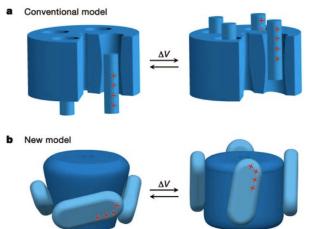


Figure : The conventional model vs the paddle model. (doi:10.1038/nature01580, 2003)

Structure of Kv channel

Zeng, Zhang, Zhao

Controversy

LRET

Introduction The donor and acceptor Energy transfer Applications

Impacts

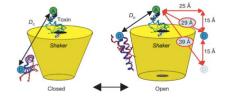


Figure : Left: The isolated voltage sensor. (doi:10.1038/nature01580, 2003) Right: Diagram of paddle model (doi:10.1038/nature03819, 2005)

Magnitude of displacement as the litmus test

Small vertical movement of Kv measured with LRET

Zeng, Zhang, Zhao

Controversy

LRET

The donor and acceptor Energy transfer Applications

Impacts

- The conventional model predicts small (~2Å) movement
- \bullet Paddle model predicts large (~10Å) movement
- LRET (to be explained) measurement
 - donors attached to S4, S3b sites
 - acceptor attached to channel using scorpion venom
- Scorpion venom has no effect on the "paddles."

Pyramid geometry

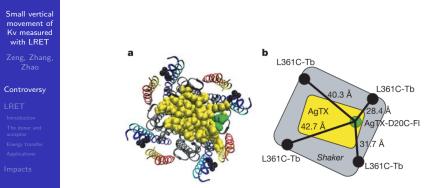


Figure : The 4 donors are attached to S4, S3b sites, while the acceptor is attached to the pore.

Reigning champion

Small vertical movement of Kv measured with LRET

Zeng, Zhang, Zhao

Controversy

LRET

Introduction The donor and acceptor Energy transfe Applications

Impacts

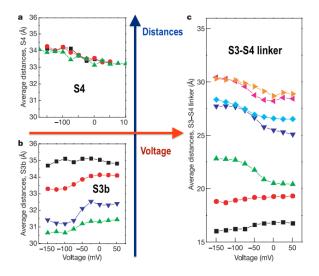
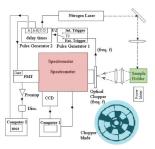


Figure : Selvin, doi:10.1038/nature03819

Lanthanide-Based Resonance Energy Transfer

Small vertical movement of Kv measured with LRET

Zeng, Zhang Zhao


Controversy

LRET

Introduction The donor a

Energy transf

Impacts

The crucial component

We are to measure distances ~1Å *in vivo* via common optical instruments!

Lanthanide-Based Resonance Energy Transfer

Paul R. Selvin

(Invited Paper)

Figure : Selvin, *Selected Topics in Quantum Electronics*, Dec 1996, doi: 10.1109/2944.577339

Short and fast decays

Small vertical movement of Kv measured with LRET

Zeng, Zhang, Zhao

Controversy

LRET

Introduction

The donor and acceptor Energy transfer Applications

Impacts

- Two electrons in the ground state *S* = 0
- Fluorescence: singlet-singlet (*S* = 0)
 - short lifetime $\sim 1 n s$
- Phosphorescence: singlet-triplet (*S* = 1)
 - much longer lifetime $\sim 1 m s$
- Vibrations broaden the spectra and dissipate energy

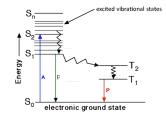


Figure : Jablonski diagrams of fluorescent and phosphorescent emissions.

Elements of wonder: the Lanthanides

Small vertical movement of Kv measured with LRET

Zeng, Zhang, Zhao

Controversy

LRET

Introduction

The donor and acceptor Energy transfe

Impacts

• High-spin atoms

- in general S > 1
- fluorescence or phosphorescence?
- Iuminescence!
- $\bullet~{\rm long-lived}\sim 1 m s$
- Valence electrons in f-orbitals
 - the f-orbitals are "buried inside"
 - also weak absorbers

Elements of wonder: the Lanthanides

Small vertical movement of Kv measured with LRET

Zeng, Zhang, Zhao

Controversy

LRET

Introduction

The donor and acceptor Energy transfe

Impacts

• High-spin atoms

- in general S > 1
- fluorescence or phosphorescence?
- Iuminescence!
- $\bullet~{\rm long-lived} \sim 1 m s$

• Valence electrons in f-orbitals

- the f-orbitals are "buried inside"
- also weak absorbers

Elements of wonder: the Lanthanides

Small vertical movement of Kv measured with LRET

Zeng, Zhang, Zhao

Controversy

LRET

Introduction

The donor and acceptor Energy transfe

Impacts

• High-spin atoms

- in general S > 1
- fluorescence or phosphorescence?
- Iuminescence!
- long-lived $\sim 1 m s$
- Valence electrons in f-orbitals
 - the f-orbitals are "buried inside"
 - also weak absorbers

The donor and the acceptor

Small vertical movement of Kv measured with LRET

Zeng, Zhang Zhao

Controversy

LRET

Introduction

The donor and acceptor

Energy transfe Applications

Impacts

- The donor comprises 3 parts
 - the lanthanide ion (blue in figure), which will transfer energy to the acceptor
 - the antenna (red in figure), which receives energy from the laser and pass it on to the ion
 - the chelate, which holds and protects the ion
- The acceptors are the usual organic dyes

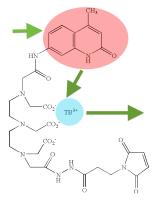


Figure : Selvin, et al.

The donor and the acceptor

Small vertical movement of Kv measured with LRET

Zeng, Zhang Zhao

Controversy

LRET

Introduction

The donor and acceptor

Energy transfe Applications

Impacts

- The donor comprises 3 parts
 - the lanthanide ion (blue in figure), which will transfer energy to the acceptor
 - the antenna (red in figure), which receives energy from the laser and pass it on to the ion
 - the chelate, which holds and protects the ion
- The acceptors are the usual organic dyes

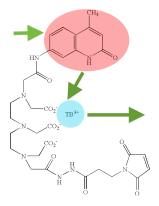


Figure : Selvin, et al.

Energy transfer via donor-acceptor coupling

Small vertical movement of Kv measured with LRET

Zeng, Zhang, Zhao

Controversy

LRET

Introduction The donor and acceptor

Energy transfer

Impacts

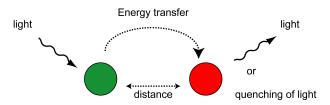


Figure : The donor receives energy from the laser then transfers a virtual photon to the acceptor which emits a photon of a different frequency.

- Within an effective range $R_0 \sim \lambda$, the donor may transfer energy to the acceptor
 - The matrix element is dipole-dipole coupling
 - The rate of energy transfer is therefore $\propto 1/R^6$

Efficiency of energy transfer is distance-dependent

Small vertical movement of Kv measured with LRET

Zeng, Zhang, Zhao

Controversy

LRET

Introduction The donor and acceptor

Energy transfer

Applications

Impacts

• The excited donor loses energy and decays back to ground state in essentially two ways.

Efficiency of energy transfer

$$\mathcal{E} = \frac{\#(\text{energy transfer})}{\#(\text{energy transfer}) + \#(\text{direct emission})}$$
$$= \frac{k_{\text{DA}}}{k_{\text{DA}} + k_{\text{D}}} = \frac{1}{1 + k_{\text{D}}/k_{\text{DA}}}$$

- $k_{\rm D}$ is the decay rate of a single donor
- $k_{\rm DA}$ is the decay rate of donor-acceptor pair
- The rate $k_{\rm DA}$ is distance dependent and $k_{\rm D}/k_{\rm DA} = (R/R_0)^6$

Energy transfer efficiency is related to lifetimes

Small vertical movement of Kv measured with LRET

Zeng, Zhang, Zhao

Controversy

LRET

The donor an

Energy transfer

Applications

Impacts

• The donor-acceptor coupling will also modify donor lifetime

 $\tau_{\rm D} \xrightarrow{\text{donor-acceptor coupling}} \tau_{\rm DA}$

• $\tau_{\rm D}$ donor lifetime • $\tau_{\rm DA}$ modified lifetime

The energy transfer efficiency can also be written as

$$\mathcal{E} = \frac{\Delta \tau}{\tau_{\rm D}} = \frac{\tau_{\rm D} - \tau_{\rm DA}}{\tau_{\rm D}} = 1 - \frac{\tau_{\rm DA}}{\tau_{\rm D}}$$

- The lifetimes can be accurately measured by fitting curves.
- Therefore, we will obtain the distance *R* from the data of lifetimes!

Greater the overlap, longer the ruler!

Small vertical movement of Kv measured with LRET

Zeng, Zhang, Zhao

Controversy

LRE1

Introduction The donor and acceptor Energy transfe Applications • The effective range provides us a length scale, the size of the ruler.

• The R_0 is related to spectral overlap J, $R_0^6 \propto J$

Normalized spectral overlap

$$J = \frac{\int \epsilon_{\rm A}(\lambda) f_{\rm D}(\lambda) \lambda^4 d\lambda}{\int f_{\rm D}(\lambda) d\lambda}$$

ϵ_A is the absorption spectrum of the acceptor

f_D is the emission spectrum of the donor

Greater the overlap, longer the ruler!

Small vertical movement of Kv measured with LRET

Zeng, Zhang, Zhao

Controversy

LRET

Introduction The donor and acceptor Energy transfer Applications • The effective range provides us a length scale, the size of the ruler.

• The R_0 is related to spectral overlap J, $R_0^6 \propto J$

Normalized spectral overlap

$$J = \frac{\int \epsilon_{\rm A}(\lambda) f_{\rm D}(\lambda) \lambda^4 d\lambda}{\int f_{\rm D}(\lambda) d\lambda}$$

- $\bullet~ \epsilon_A$ is the absorption spectrum of the acceptor
- $f_{\rm D}$ is the emission spectrum of the donor

Small vertical movement of Kv measured with LRET

Zeng, Zhang, Zhao

Controversy

LRE¹

The donor an acceptor

Energy transfe

Applications

Impacts

• Sources of noise

- The background, autofluorescent emissions $\sim 1 \mathrm{ns}$
- $\bullet\,$ The unpaired donors, lifetime $\sim 1ms,$ same order as that of the donor-acceptor pair
- The former can be separated from the donor-acceptor emission through their significantly different lifetimes!

Failure in the latter

Small vertical movement of Kv measured with LRET

Zeng, Zhang, Zhao

Controversy

LRE⁻

The donor an acceptor

Energy transfe

Applications

Impacts

Sources of noise

$\bullet~$ The background, autofluorescent emissions $\sim 1 n s$

 $\bullet\,$ The unpaired donors, lifetime $\sim 1 m s,$ same order as that of the donor-acceptor pair

• The former can be separated from the donor-acceptor emission through their significantly different lifetimes!

Failure in the latter

Small vertical movement of Kv measured with LRET

Zeng, Zhang, Zhao

Controversy

LRE'

The donor an acceptor

Energy transfe

Applications

Impacts

Sources of noise

- $\bullet~$ The background, autofluorescent emissions $\sim 1 n s$
- $\bullet\,$ The unpaired donors, lifetime $\sim 1 m s,$ same order as that of the donor-acceptor pair
- The former can be separated from the donor-acceptor emission through their significantly different lifetimes!

Failure in the latter

Small vertical movement of Kv measured with LRET

Zeng, Zhang, Zhao

Controversy

LRE⁻

The donor an acceptor

Energy transfe

Applications

Impacts

Sources of noise

- $\bullet~$ The background, autofluorescent emissions $\sim 1 n s$
- $\bullet\,$ The unpaired donors, lifetime $\sim 1 m s,$ same order as that of the donor-acceptor pair
- The former can be separated from the donor-acceptor emission through their significantly different lifetimes!

Failure in the latter

Small vertical movement of Kv measured with LRET

Zeng, Zhang, Zhao

Controversy

LRE⁻

The donor an acceptor

Energy transfe

Applications

Impacts

Sources of noise

- $\bullet~$ The background, autofluorescent emissions $\sim 1 n s$
- $\bullet\,$ The unpaired donors, lifetime $\sim 1 m s,$ same order as that of the donor-acceptor pair
- The former can be separated from the donor-acceptor emission through their significantly different lifetimes!

Failure in the latter

LRET is insensitive to incomplete labeling

Small vertical movement of Kv measured with LRET

Zeng, Zhang, Zhao

Controversy

LRET

The donor and acceptor Energy transfe

Applications

Impacts

• We may distinguish the emissions from donors and donor-acceptor pairs through "colors"

Different Spectral Properties

- The acceptors are organic molecules whose spectra spread out
- Lanthanide donor spectra are sharply spiked

• Therefore, we are able to filter out the donors by looking at the "gaps."

LRET is insensitive to incomplete labeling

Small vertical movement of Kv measured with LRET

Zeng, Zhang, Zhao

Controversy

LRET

The donor and acceptor

Applications

Impacts

• We may distinguish the emissions from donors and donor-acceptor pairs through "colors"

Different Spectral Properties

- The acceptors are organic molecules whose spectra spread out
- Lanthanide donor spectra are sharply spiked

• Therefore, we are able to filter out the donors by looking at the "gaps."

LRET is insensitive to incomplete labeling

Small vertical movement of Kv measured with LRET

Zeng, Zhang, Zhao

Controversy

LRET

The donor and acceptor Energy transfe

Applications

Impacts

• We may distinguish the emissions from donors and donor-acceptor pairs through "colors"

Different Spectral Properties

- The acceptors are organic molecules whose spectra spread out
- Lanthanide donor spectra are sharply spiked
- Therefore, we are able to filter out the donors by looking at the "gaps."

Spectra of the donor and acceptor

Small vertical movement of Kv measured with LRET

Zeng, Zhang Zhao

Controversy

LRE¹

Introduction The donor an acceptor Energy transf Applications

Impacts

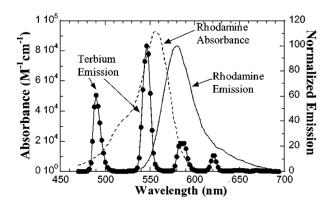


Figure : The donor (with a lanthanide ion) spectrum is sharply spiked and exhibits dark regions. There is a good overlap between donor emission and acceptor absorbance.

LRET Setup

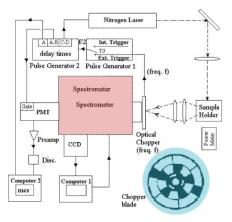


Figure : The chopper (blue) is synchronized with the laser pulses and the spectrometer (red) is tuned to the dark regions of the donor spectrum.

Cited 111 times in total

Figure : Citation data obtained from Scopus

Small vertical movement of Kv measured with LRET

Zeng, Zhang, Zhao

Controversy

LRET

The donor an acceptor

Energy transfe

Impacts

- The paper is well-written with clearly defined concepts and motivation.
- The LRET is mature, whose accuracy has been verified.
- The use of AgTX (venom) unambiguously resolves the controversy.
- Important in cellular biology, neuroscience, medical science.
- Niche paper, yet, easy to understand.

Small vertical movement of Kv measured with LRET

Zeng, Zhang Zhao

Controversy

LRET

The donor an

Energy transfe

Impacts

- The paper is well-written with clearly defined concepts and motivation.
- The LRET is mature, whose accuracy has been verified.
- The use of AgTX (venom) unambiguously resolves the controversy.
- Important in cellular biology, neuroscience, medical science.
- Niche paper, yet, easy to understand.

Small vertical movement of Kv measured with LRET

Zeng, Zhang, Zhao

Controversy

LRET

The donor an

Energy transfe

Impacts

- The paper is well-written with clearly defined concepts and motivation.
- The LRET is mature, whose accuracy has been verified.
- The use of AgTX (venom) unambiguously resolves the controversy.
- Important in cellular biology, neuroscience, medical science.
- Niche paper, yet, easy to understand.

Small vertical movement of Kv measured with LRET

Zeng, Zhang Zhao

Controversy

LRET

The donor an

Energy transfer

Impacts

Our Comments

- The paper is well-written with clearly defined concepts and motivation.
- The LRET is mature, whose accuracy has been verified.
- The use of AgTX (venom) unambiguously resolves the controversy.
- Important in cellular biology, neuroscience, medical science.

• Niche paper, yet, easy to understand.

Small vertical movement of Kv measured with LRET

Zeng, Zhang, Zhao

Controversy

LRET

The donor and acceptor

Energy transfe Applications

Impacts

- The paper is well-written with clearly defined concepts and motivation.
- The LRET is mature, whose accuracy has been verified.
- The use of AgTX (venom) unambiguously resolves the controversy.
- Important in cellular biology, neuroscience, medical science.
- Niche paper, yet, easy to understand.

Medical application

Small vertical movement of Kv measured with LRET

Zeng, Zhang, Zhao

Controversy

LRET

The donor and acceptor

Applications

Impacts

- hERG potassium channels and cardiac arrhythmia (doi:10.1038/nature04710, 2006)
- $\bullet\,$ hERG, the gene for the subunit of K^+ channel
- A blockage of hERG $\rm K^+$ channel causes arrhythmia
 - mutations in the hERG gene
 - or by drugs
- The S4 domain moves in response to changes in membrane potential

Dr. Selvin is very nice!

Small vertical movement of Kv measured with LRET

Zeng, Zhang Zhao

Controvers

LRE1

Introduction The donor and acceptor Energy transfe Applications

Impacts

Advertisement

- "I'm taking students. If you are interested in my works, just come to my office and talk!"
- email: selvin@illinois.edu
- group page: http: //people.physics. illinois.edu/Selvin/ PRS/PRS.html