Is the proton as "big" as we thought?

Brendt Christensen Matthew Coon Souvik Dutta

Journal Club Presentation PHYS 596

"Proton Structure from the Measurement of 2S-2P Transition Frequencies of Muonic Hydrogen"

> Science : Vol. 339 no. 6118 pp. 417-420 DOI: 10.1126/science.1230016

The proton-size puzzle

• "Radius" of the proton can be *defined* and *determined* in various ways

The proton-size puzzle

- "Radius" of the proton can be *defined* and *determined* in various ways
- One attempt to do so runs into trouble - it seems inconsistent with everything else!

The proton-size puzzle

- "Radius" of the proton can be *defined* and *determined* in various ways
- One attempt to do so runs into trouble - it seems inconsistent with everything else!
- Is this a window for new physics, or another experimental goof-up?

 \dagger lamb = a small sheep ;)

 $\checkmark\,$ Standard way to write down the angular momentum quantum numbers of a state.

 $N^{2S+1}L_J$

L : Orbital angular momentum (S, P, D, F ... for $\ell = 0, 1, 2, 3, ...$)

J : Total angular momentum

Digression : the spectroscopic notation

 $\checkmark\,$ Standard way to write down the angular momentum quantum numbers of a state.

 $N^{2S+1}L_J$

L : Orbital angular momentum (S, P, D, F \ldots for $\ell=$ 0, 1, 2, 3, \ldots) J : Total angular momentum

e.g. : single electron states (spin- $\frac{1}{2}$ system!), like in Hydrogen

$$1\,{}^{2}S_{\frac{1}{2}} \quad 2\,{}^{2}S_{\frac{1}{2}} \quad 2\,{}^{2}P_{\frac{3}{2}} \quad 2\,{}^{2}P_{\frac{1}{2}} \quad 3\,{}^{2}S_{\frac{1}{2}} \quad 3\,{}^{2}P_{\frac{3}{2}} \quad 3\,{}^{2}P_{\frac{1}{2}} \quad 3\,{}^{2}D_{\frac{5}{2}}$$

Fig: A subtle structure of the n=2 level in hydrogen according to Bohr's, Dirac's and QED with Lamb Shift.

Thou art not solid, proton!

 \checkmark Finite probability of electron to be found inside the nucleus.

Two ways of defining the "radius" of the proton

- \checkmark Neither atoms nor their nuclei have definite boundaries we define a
 - Charge radius (r_E , based on the distribution of charge) and a
 - Zemach radius (r_Z , reflects the spatial distribution of $\vec{\mu}$ smeared out by $\rho(\vec{r})$).

7 / 19

 \checkmark Historically, r_E and r_Z were determined using measurements of the **differential cross section** in elastic e-p scattering.

 $\checkmark~$ A more accurate measurement is expected from laser spectroscopy of "Muonic Hydrogen". (Why?)

Muon (e^{-} 's heavier twin) orbiting the proton instead of electron.

$$m_{\mu} = 207 m_e$$
$$r_{\mu} = \frac{1}{186} r_e$$

The experiment

(We'll try not to make it boring!)

The experiment

We're measuring r_E from spectroscopy of the $2S_{1/2} - 2P_{3/2}$ transition.

Step 1/3: prepare muonic hydrogen in 2S state

- \checkmark Highly energetic μ^- stopped in ${\rm H_2}$ gas
- $\checkmark~$ Highly excited $\mu\text{-p}$ atoms form (n \approx 14)

 $\checkmark~\sim 1\%$ populate long-lived 2S state

GO BACK

Step 2/3: induce $2S \rightarrow 2P$ transitions

- $\checkmark \quad \text{Laser pulse induces} \\ 2S \rightarrow 2P \text{ transitions} \end{cases}$
- \checkmark Immediately follows $2P \rightarrow 1S$ de-excitation

Step 3/3: measure the transition frequencies, what else!

- \checkmark $\,$ Finite proton size significantly affects Lamb shift and 2S HFS $\,$
- ✓ Some linear combinations of $\hbar\nu_s$, $\hbar\nu_t$, $\Delta E_{\rm FS}^{2P}$, $\Delta E_{\rm HFS}^{2P}$ yield Lamb shift and 2S HFS

- \checkmark $\,$ Finite proton size significantly affects Lamb shift and 2S HFS $\,$
- ✓ Some linear combinations of $\hbar\nu_s$, $\hbar\nu_t$, $\Delta E_{\rm FS}^{2P}$, $\Delta E_{\rm HFS}^{2P}$ yield Lamb shift and 2S HFS
- \checkmark From 2S hyperfine splitting, we get r_Z , the **Zemach radius**.

$$\Delta E_{\mathsf{HFS}}^{\mathsf{th}} = \ldots + (\ldots) r_{\mathsf{Z}} + (\ldots)$$

 $r_Z = 1.082(37) \text{ fm}$

- \checkmark $\,$ Finite proton size significantly affects Lamb shift and 2S HFS $\,$
- ✓ Some linear combinations of $\hbar\nu_s$, $\hbar\nu_t$, $\Delta E_{\rm FS}^{2P}$, $\Delta E_{\rm HFS}^{2P}$ yield Lamb shift and 2S HFS
- \checkmark From 2S hyperfine splitting, we get r_Z , the **Zemach radius**.

$$\Delta E_{\mathsf{HFS}}^{\mathsf{th}} = \ldots + (\ldots) \; r_{\mathsf{Z}} + (\ldots)$$

 $r_Z = 1.082(37) \text{ fm}, \qquad r_Z^{\text{Friar}} = 1.086(12) \text{ fm}, \qquad r_Z^{\text{Distler}} = 1.045(40) \text{ fm}$

Experimental limit for measuring $r_Z \sim$ 3.4 %

 \checkmark So far, so good!

 \checkmark From Lamb shift, we get the charge radius.

$$\Delta E_{\mathsf{L}}^{\mathsf{th}} = \ldots + (\ldots) r_{\mathsf{E}}^2 + (\ldots)$$

$$r_{\rm E} = 0.84087(39) \text{ fm}, \qquad r_{\rm E}^{\rm CODATA} = 0.8775(51) \text{ fm}$$

 \checkmark From Lamb shift, we get the **charge radius**.

$$\Delta E_{\mathsf{L}}^{\mathsf{th}} = \ldots + (\ldots) r_{\mathsf{E}}^2 + (\ldots)$$

 $r_{\rm E} = 0.84087(39) \text{ fm}, \qquad r_{\rm E}^{\rm CODATA} = 0.8775(51) \text{ fm}$

At 7 σ variance with CODATA!

Did we miss something?

$$r_{\rm E} = 0.84087(39) \, {\rm fm}, \qquad r_{\rm E}^{\rm CODATA} = 0.8775(51) \, {\rm fm}$$

! Maybe we should try a different $\rho(\mathbf{r})$? \implies changes r_{E} by less than the quoted uncertainty! (more on a later slide.)

 $r_{\rm E} = 0.84087(39) \text{ fm}, \qquad r_{\rm E}^{\rm CODATA} = 0.8775(51) \text{ fm}$

! Maybe we should try a different $\rho(\mathbf{r})? \implies$ changes r_{E} by less than the quoted uncertainty! (more on a later slide.)

! Other possibilities (spectroscopy of pp μ or μ pe⁻ instead of μ -p) can be excluded.

 $r_{\rm E} = 0.84087(39) \text{ fm}, \qquad r_{\rm E}^{\rm CODATA} = 0.8775(51) \text{ fm}$

! Maybe we should try a different $\rho(\mathbf{r})? \implies$ changes r_{E} by less than the quoted uncertainty! (more on a later slide.)

! Other possibilities (spectroscopy of pp μ or μ pe⁻ instead of μ -p) can be excluded.

! Yet other recent e-p scattering measurements support the CODATA value.

For the thinking layman ...

- ? Is the μ -p interaction different (in what way?) from the e-p interaction?
- ? Is this a window (albeit possibly small) of new physics?

? Do new force carriers (MeV-mass) exist? (In conformity with other results)

More serious attempts at resolution

 $\times\,$ Gorchtein: uses finite-energy sum rule to find the correction to the proton-polarizability of -(40 +/- 5) μeV . Not enough to explain the 300 μeV difference.

 $\times~$ Griffith: uses bound-state field theory on proton structure in $\mu\text{-p.}$ No positive results yet.

? Moumni: Corrects for the noncommutativity in space-space and space-time versions. Says discrepancy is solved by the corrections depending on m^3 giving shifts in the spectrum. New paper though, hasn't been reviewed yet.

Citation Evaluation

No. of citations : 24

- 13 new proposals, theories, or experiments : Trying to explain the "proton radius puzzle".
- 2 were self-citations (by someone among the authors)
- 9 were papers using the determined values or similar techniques as this experiment.

From the reviewer's POV

What we thought was good :

- Attention to detail sources of experimental errors; possible sources of discrepancy
- Clear flow of reasoning

- Talk about changing $\rho(\mathbf{r})$ out of the blue
- No obvious reason for de-excitation into 1S and 2S only LOOK UP

... and apart from that, the world is still as beautiful.

GO TO SUMMARY

Definitions of the radii

The charge radius is defined as

$$r_{\rm E}^2 = \int_0^\infty r^2 \rho(r) dr$$

In general, of course, we could define it in any way, for e.g.

$$r_{\rm E} = \left(\int_0^\infty r^n \rho(r) dr\right)^{1/n}$$

GO BACK

What we should retain!

- We aim to measure the charge and Zemach radii of the proton.
- Useful as inputs for tests of bound-state QED
- Earlier experiments with e-p scattering in H-atom this time, laser spectroscopy of muonic Hydrogen
- From spectroscopy, we deduce Lamb shift and 2S hyperfine splitting and from them the charge and Zemach radii.
- Turn out to be significantly smaller than accepted proton radius
- Consequences? Window for new physics?

PROTON SIZE PUZZLE