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Motivation of the Research

e Low-dimensional
systems are interesting
as they demonstrate
guantum mechanical
phenomena.

 Graphene has not been
thoroughly studied in
an experimental setting. Carbon nanotube

Graham Templeton




Graphene Timeline

1961: First named by Hanns-Peter Boehm
2004: Isolated by Novoselov et al.

2010: Geim and Novoselov win Nobel Prize
in Physics

2013: Over 9000 patents have been filed W_k'_\lot;?'cPrize
for graphene (Wall Street Journal)



Charge Carriers are Massless in Graphene!

e Energy-momentum dispersion
of typical semiconductor is
parabolic.

e Energy-momentum dispersion
of graphene is linear (Famous
Dirac cone).

Energy dispersion relation for (a)
conventional semiconductor; (b)

graphene
Yasuhiro Hatsugai



Sample Preparation and Well-Understood

craphene wire | [Ml@easurement Technique

\

e Sample Processing:

— Micromechanical cleavage of graphite (top-
down approach)

1. A “layered crystal [of graphene] was
rubbed against another surface.”

2.  “Preliminary identification... was done
in an optical microscope.”

3. The next phase of selection of single-
layer crystals was done using AFM.
e Transport measurements performed
using six-terminal Hall bar device

Contact

SEM image of device
Novoselov et al., Nature 2005



Slide 6

t8 New title for this slide
thomas, 12/2/2013



Single-Layer Graphene Shows Half-Integer
Quantum Hall Effect

If integer quantum Hall effect

(QHE),
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Quantum Hall effect of graphene
Novoselov et al., Nature 2005



Shubnikov-de Haas
Oscillations (SAHO) in Graphene

Shubnikov-de Haas oscillations

— Conductivity oscillations that occur
at low temperatures in the presence

of intense magnetic fields

Lifshitz-Kosevich formula

A T am, 1’ -
T = sin E

— A: amplitude, T: temperature, a:

constant, m, : cyclotron mass, B:

magnetic field

— m_ was calculated
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SdHO in graphene
(a) SAHO at constant gate voltage
-60V as a function of magnetic field B
(b) SAHO at constant magnetic field 12T as a

function of gate voltage (blue, T=20K; green,
T=80K; red, T=140K)



Massless Dirac Fermions Move at a
Relativistic Speed!

* Semi-classical
calculation:

c.=10°m/s

* Allows access to physics
of quantum
electrodynamicsin a
“bench-top” experiment

LHC at CERN
Maximilien Brice, © CERN



Electrical Conductivity Has a Minimum

 Note conductivity, not conductance
e Result of adherence to Dirac equation

* Mean free path of charge carriers never goes
below minimum (wavelength)

— Applies in the absence of localization
— Noted by Mott



Shubnikov-de Haas
Oscillations Again

e Note maximum of
resistivity (green)

e Conductivity
remains limited
even as
“concentrations of
charge carriers
tend to zero.”
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Quantum Hall effect of graphene
Novoselov et al., Nature 2005
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Minimum Conductivity Predictions:
Close, But Not Quite

e Predicted minimum conductivity near e?/mth
e Measured minimum found at e%/h

e Compare to:

Gusynin, V. P., & Sharapov, S. G. (2005).
Unconventional Integer Quantum Hall Effect in
Graphene. Physical review letters, 95(14),
146801

Peres, N. M. R., Guinea, F., & Castro Neto, A. H.

(2006). Electronic properties of two-dimensional
carbon. Annals of Physics, 321(7), 1559-1567.



Other Findings Agree with Theory

e Same papers above anticipate half-integer SAHO
effect

o “Relativistic” speed c. ~ 10° m/s fits with band
structure calculations, example source below

Dresselhaus, M. S., & Dresselhaus, G. (2002). Intercalation compounds
of graphite. Advances in Physics, 51(1), 1-186.

 We say relativistic because inertial mass is
proportional to energy

* m_=E/c.? applies, where E can be assumed to
equal kinetic energy



* |nvestigate electronic properties

Tight-Binding Model for Graphene

e Graphene is a 2D crystal; the
carbon atoms form a honeycomb
lattice (triangular Bravais lattice
with 2 atom basis)

using a tight-binding model
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Effective Theory for Graphene is 2+1 QED!

e Absent any doping/disorder Fermi level in graphene is at the
Dirac points; thus graphene is a semi-metal

e Atlow T, the effective degrees of freedom in graphene are

massless Dirac fermions; to see this expand Hamiltonian near
the Dirac points
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 Graphene can be doped
using electric field effect




Zero-Energy Landau Level in Graphene

e To study Dirac fermions in magnetic fields -> Peierls
substitution m=rk=p+ecA wWith VxA-=B:

e Diagonalize the Hamiltonian (in some

83Uge) H(p.A) = hvpo - (p + eA) (?3 B¢O
to obtain relativistic Landau levels LL

NG L
€n = :trll’p‘\’ll".zFBH ;
l

e Degeneracy of Landau levels

valleys # flux quanta A

" _ . @
N=2x2x —
spin @0

e Degeneracy of lowest Landau level is N/2;
only one valley contributes (next slides) 16



Semi-Classical Quantization Gives Exact
Results!

Provides very good intuition and correct (surprisingly) transport
results for Dirac fermions; very easy compared to full theoretical
guantum treatment

Semi-classical transport hk = —er x B

Semi-classical quantization fp-r f[hk-r ¢ {A- — ed, = 2nh(n + )
where y is the guantum mechanical phase accumulated

I. 2
€ = ihl'1|k| ' (I)n - BS,,(I‘) B‘S’u(k) (j)
| 2¢
€, = thvp\| —B(n + ~
I \ 7 ( )
Turns out y = % for electrons in regular metals and y = 0 for Dirac

electrons; semi-classical quantization recovers exact result! (next
slide)



Phase Shift and Berry’s Phase

 The phase shift accumulated as the momentum varies on
a loop in k-space 1 T

-~ - -

E- 2m

e The factor of %2 comes from failure of semi-classical

guantization near classical turning points (e.g., WKB for
harmonic oscillator)

e Tis known as Berry’s phase ['(C) =i /( dk (1| Vit k)

where u(n, k) are Bloch wave-functions

* Non trivial Berry’s phase because of band degeneracy at
Dirac points

e On a contour Caround the K point, y = 0; on a contour C’
around K’,y=1

ONLY ONE VALLEY CONTRIBUTES TO LOWEST LEVEL LANDAU ATE=0



SdHO Peaks at Integer Landau Filling Factor

Landau levels broaden in the presence of scattering mechanism
(disorder)

p.=(B) ~ density of states

Density of states (and hence magnetoresistance) is maximum when
highest Landau level (LL) is half-filled

The presence of E= 0 LL Increasing B
in graphene, with half- B=0 @)

degeneracy of the other

LLs, implies E
magnetoresistance is F
maximum at integer

Landau filling factor (next ?
slide for definition) 4 )
Even though rest-mass is ' Density of States
zero, cyclotron mass

(semi-classical 12 9S(E)
expression) is not e = S T OE

2
E =m.ug
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Graphene Exhibits Anomalous QHE

e Hall conductivity as a topological invariant (TKNN)

spin x valleys

c~ Landau filling factor
=4 X — XV

h

Quantum unit of resistance

0.:‘;/

e In traditional quantum hall effect, the Landau filling
factor is # filled Landau levels (also, no valleys)

* In graphene, because the degeneracy in lowest LL is
only half of the other LLs
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Dirac Equation Describes Electronic
Properties of Graphene

* Main points:

1. Graphene’s conductivity never falls below a
minimum, even when concentrations of charge
carriers tend toward zero.

2. Half-integer QHE in graphene related to
properties of massless Dirac fermions.

3. The cyclotron mass of massless carriers in
graphene is described by E = mc.?
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Our Thoughts

* Main points:
1. Good:

a. Good take-away message for the non-expert
b. Arguments supported by figures

2. Not so good:

a. Why are localization effects suppressed?

b. Minor details:
—  Poor distribution of images
—  Typos
—  Mislabeled figures

e Overall great paper!
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Paper quickly becomes highly-cited

Number of citations:

— 6170 (Web of Knowledge)

— 6331 (SCOPUS)

— Most cited in 2012 (1306 times)

Times cited by year
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Contributes to explosion in research

2010 Nobel Prize in Physics!

“The rise of graphene,” Nature Materials (8393 citations)

— Same authors describe “new paradigm of 'relativistic' condensed-
matter physics.”

“Observation of electron-hole puddles in graphene using a
scanning single-electron transistor,” Nature Physics (569
citations)

— “Density of states can be quantitatively accounted for by considering
non-interacting electrons and holes [unlike non-relativistic particles].
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