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Why Study Monolayer WS, ?

 Model transition-metal dichalcogenide (TMD)

— Large splitting between A and B excitons means
no overlap between them

e 2D properties of TMDs show promise

— Carrier concentration easily controllable with light
* Possible because of direct bandgap



Measuring the exciton binding energies

* Researchers shined linearly
polarized light on monolayer
WS,

 Measured the reflectance of
light at various energies in
order to measure the energy
level of excited excitons




Excitonic energies don’t show
hydrogenic behavior

* Plotted observed exciton energy levels

— Did not observe the expected hydrogenic energy
spectrum

e Calculated a band gap of 0.32 eV
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Measurements of Reflectivity Contrast

Peaks
Reflectance contrast of Calculated derivative
monolayer WS, measured — Shows peaks more
clearly
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Fitting Binding Energies to Hydrogenic
Hamilton
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Energy Levels Don’t Match Hydrogenic
Hamiltonian

Recalculate € as function of n
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i) neZH r v r
=" (‘) (‘)]

Provides the necessary long range
1/r behavior, but alters the short
range potential primarily



Fitting the Experimental Data with
New Hamiltonian
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Number of Layers Changes the Energy
and Number of Exciton Excitations
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Primarily a monolayer effect, very quickly drops
off with increasing thickness



Review of Important Ideas

o Authors used reflectance to determine exciton
binding energy in WS,

* Energy levels for n > 2 resemble Hydrogen
energy levels (Rydberg series)

* Deviations well-explained by screening effects



Are these properties universal?

« Authors want to understand properties of TMDs

* Do their results extend to other such materials?
* Nonhydrogenic model derived based on
geometry of system

« Should be universally applicable to similar
monolayers



Why results might apply to other 2D
materials
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Screening Depends on the Size of
the EXxciton

(c) WS, layer:

strong screening 25
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surrounding medium
weaak scresning

 Larger excitons/higher n values, the electric field
exists significantly outside the monolayer
* Lowers the screening



High Binding Energy

-Non-hydrogenic behavior and high binding
energy (0.32 eV) common in 2D TMDs

-Implies high thermal stability

-Potential applications in optoelectronics in visible
range

-Higher order effects likely to be important (trion
and biexiton formation)



Critiques of the Paper
Well-written paper gives especially good
Introduction and qualitative descriptions
Much supplementary material (including setup)

Measured relative reflectance, reported its
energy derivative

Not specified how to obtain energy levels from
this measurement

Errors given without explanation



Citation Analysis: Basic Facts

* “Birthday” : August 13, 2014

e 87 Citations so far (via SCOPUS)
- 78 in 2015



Citation Context Within Field

Out of 87 citations, 75 are independent of the
Columbia/ Brookhaven group

Ramasubramaniam, A

Cited 6 times each by Berkeley] ~

2015 Scientific Reports

Citations of Citations
- Exciting field

References
- 27 of 35 references are from 2009+




Evolution of the Field

* Two Main Paths
-2D layers in general

- Excitons in very similar materials (Mo0S2,ReS2,WSe?2)
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Similar Subsequent Studies

e Exciton Binding Energy of Monolayer WS2(Keliang He,
Nardeep Kumar,et al.)

- studies trion binding energy, exciton-exciton annihilation

* Probing Excitonic Dark States in Single-layer Tungsten
Disulfide(Ziliang Ye, Ting Cao,et al.)

- studies dark states that do not absorb/transmit photons

* Non-linear Optical Spectroscopy of Excited Exciton
States for Efficient Valley Coherence Generation in
WSe2 Monolayers(G. Wang, X. Marie,et al.)

- studies valley coherence ( electron states at band edges)



Similar Studies

* Optically bright p-excitons indicating strong Coulomb
coupling in transition-metal dichalcogenides(Tineke
Stroucken, Stephan W. Koch)

- experimentally compares resonance energies with computed values

- optically bright excitonic transitions have p-like symmetry

e Tightly Bound Excitons in Monolayer WSe2 (Keliang He,
Nardeep Kumar, et al.)

- excited exciton states even at room temperature



Authors’ Continued Interest

* Recent Paper Titles

-Binding energies and spatial structures of small carrier complexes in monolayer
transition-metal dichalcogenides via diffusion Monte Carlo

-Electrical Tuning of Exciton Binding Energies in Monolayer WS2

-Observation of excitonic Rydberg states in monolayer MoS2 and WS2 by
photoluminescence excitation spectroscopy

-Observation of biexcitons in monolayer WSe 2



Future of the Field

e 2D materials are in high demand

= relatively young field (c. 2004)

= Graphene studies win 2010 Nobel Prize (Andre Geim, Konstantin Novoselov)
* Applications to technology

= WS2 offers large binding energy, band gap

= 2D features:

- Coulomb interaction enhancement
- many-body physics

- high performance field effect transistors



