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Motivation

• Apply trapping techniques to 
macroscopic particles

• Study Brownian motion in a gas

We can’t measure the 
instantaneous velocity 
of Brownian motion!



Brownian Motion Overview

• Brownian motion applies to many fields
• Different types of transport with various 

timescales:

Diffusive Motion Ballistic Motion

Over long time scales compared 
to relaxation times

Over short time scales compared 
to relaxation times

Random motion Dominated by inertia



Comparison of Brownian Motion Models
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Experimental Approach

Use optical tweezers to make a 3D trap
• Allows us to suspend particle in gas

• Previous measurements in fluid had large uncertainty and required 
greater experimental resolution

Track motion of bead
• Determined by deflection of beam





Optical Tweezer Experimental Set-Up

• Orthogonally polarized, counter 
propagating beams

• z trapping from momentum 
exchange

• x and y harmonic potential 
from oscillating electric field

• 3 μm 𝑆𝑖𝑂2 (disordered lattice) 
spherical bead

• 1 Å spatial resolution



Measured Positions and Velocities of the Bead

1D motion of 3-μm-diameter silica in different pressure



Measured Mean Squared Displacement of the Bead

"Mean Squared Displacement" <[Δx(t)]2>

dashed line long-time prediction by Einstein Eq. don't agree

dash-dotted line short-time prediction by Langevin Eq. fit well

dotted line experiment data



Measured Velocities Fit to Maxwell-Boltzmann

• Dotted line --- Experimental distribution

• Solid line --- Maxwell-Boltzmann distribution



Possible Next Steps Using This Laser Cooling Method

• Feedback controlled laser cooling of several 
macroscopic objects

• Measuring entropy production from the 
paths taken of the particle

• Quantum effects in mechanical systems
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Critiques

• Authors claim heat absorption from laser is negligible

• Comparing apples to oranges: SHO vs free space

• Error bars not discussed

• Normalized counts not defined



Summary

• Assumptions about inability to measure these 
velocities is wrong! 

• Measurements align very well with the Maxwell-
Boltzmann distribution 

• Novel measurement opens a new sphere of 
applications
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Einstein Model of Diffusive Motion

The diffusion equation:
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Modified Einstein Model

By modifying Einstein's diffusion equation
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Langevin Model of Brownian Motion

Langevin Equation
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