TWO-DIMENSIONAL ATOMIC CRYSTALS

K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim doi:10.1073/pnas.0502848102
PNAS July 26, 2005 vol. 102 no. 3010451-10453

TEAM 11:LUNAN SUN, GRAY SYMON, LU TAN, DONG XU, JIALU YAN

DIMENSIONALITY IS A KEY MATERIAL PARAMETER

- The same chemical compound can exhibit dramatically different properties depending on whether it is arranged in a 0D, 1D, 2D, or 3D crystal structure.
- These different crystal structures are known as **Allotropes**. Different allotropes of the same material have different properties.

Examples of Allotropes in different dimensions.

In-Yup Jeon, Dong Wook Chang, Nanjundan Ashok Kumar and Jong-Beom Baek, 2011

PURPOSE OF THIS PAPER: WHY STUDY 2D MATERIALS?

- Quasi-0D (e.g., cage molecules), quasi-1D (e.g., nanotubes), 3D crystalline objects are well documented, but **2D is not.**
- Fundamental building element: 2d objects(graphene) are **the building blocks** for other allotropes.

2D structures (top) can be cut and twisted to produce structures in other dimensions (bottom).

THE GOAL IS TO FABRICATE SINGLE ATOMIC LAYER CRYSTALS

- Why?
 - Stable under ambient conditions
 - exhibit high crystal quality
 - continuous on a macroscopic scale
 - Useful for constructing other configurations

HOW TO CREATE A 2D CRYSTAL

HOW TO CREATE 2D MATERIALS

Micromechanical cleavage

A fresh surface of a layered crystal was rubbed against another surface. Unexpectedly, only single layered flakes emerged.

Optical microscope

2D crystallites become visible on top of an oxidized Si (300 nm of thermal SiO₂)

Atomic force microscopy (AFM)

Single-layer crystals were selected as those exhibiting an apparent thickness of approximately the interlayer distance in the corresponding 3D crystals.

IMAGES OF DIFFERENT 2D MATERIALS

Process:

- (a) and (b) --atomic force microscopy
- (c) --scanning electron microscopy
- (d) --optical microscope. (All scale bars: 1um)

Base Material:

- (a), (b) and (d) --on top of an oxidized Si wafer
- (c) --on top of a hole-filled carbon film

WHY WERE 2D CRYSTALS NOT DISCOVERED EARLIER?

- 1. Monolayers are in a great minority among accompanying thicker flakes.
- 2. 2D crystals have **no clear signatures** in transmission electron microscopy.
- 3. Monolayers cannot be seen in an optical microscope **on most substrates** (e.g., on glass or metals).
- 4. Atomic force microscopy is the only method to identify single-layer crystals, but it has a very **low throughput**.
- 5. Unclear whether it is possible to create free-standing atomic layers

ELECTRICAL CONDUCTIVITY OF THE SELECTED FIVE 2D MATERIALS

Material

Conducting Properties

2D Bi ₂ Sr ₂ CaCu ₂ O _x	highly insulating	
BN	highly insulating	
NbSe ₂	metallic with a pronounced electric field effect	
MoS_2	metallic with a pronounced electric field effect	
2D graphite	metallic with a pronounced electric field effect	

CONDUCTIVITY IS LINEARLY DEPENDENT ON GATE VOLTAGE IN 2D MATERIALS

Electric field effect in single-atomic-sheet crystals. Changes in electrical conductivity σ of 2D NbSe₂, 2D MoS₂, and graphene as a function of gate voltage are shown (300 K).

MAIN CONCLUSIONS OF PAPER

- Graphene is either a <u>shallow-gap semiconductor</u> or a <u>small-overlap semimetal</u>, in which concentration of 2D electrons and holes (induced by gate voltage) up to $n \approx 10^{13}$ cm⁻².
- 2D NbSe₂ was a <u>semimetal</u> and 2D MoS₂ was a <u>heavily doped semiconductor</u>, both are found to be electron conductors with n $\approx 10^{12}$ - 10^{13} cm⁻².
- The electron concentration in 2D NbSe₂ is <u>two orders of magnitude</u> smaller than carrier concentrations per monolayer in 3D NbSe₂. This indicates significant changes in the energy spectrum of NbSe₂ from a normal metal in 3D to a semimetal in 2D.

CITATION ANALYSIS

- 1. Published in July, 2005.
- 2. Citation number: 5160 times, according to Google Scholar 3750 times, according to Scopus
- 3. Citation history according to Scopus:

O 2016	(3) >	O 2006	(35) >
O 2015		2005	(2) >
O 2014	(707) >		
O 2013	(623) >		
O 2012	(512) >		
O 2011	(381) >		
O 2010	(329) >		
O 2009	(220) >		
O 2008	(163) >		
○ 2007	(103) >		

RESEARCH HAS EVOLVED SINCE THE PAPER WAS PUBLISHED

• Graphene: A typical 2D crystal has become the hot research area.

Geim, Andre K., and Konstantin S. Novoselov. "The rise of graphene." *Nature materials* 6.3 (2007): 183-191.

• Synthesis: Large-area synthesis methods have been developed.

Wu, Wei, et al. "Growth of single crystal graphene arrays by locally controlling nucleation on polycrystalline Cu using chemical vapor deposition." *Advanced Materials* 23.42 (2011): 4898-4903.

• Physical properties: electronic and photovoltaic properties have been studied, making it possible for the industrial applications.

Neto, AH Castro, et al. "The electronic properties of graphene." *Reviews of modern physics* 81.1 (2009): 109.

FUTURE APPLICATIONS FOR 2D MATERIALS

Electronics

New transistor, integrated circuit, quantum computer

Optoelectronics

Touchscreen, Liquid-crystal display, organic photovoltaic materials

The Nobel Prize in Physics 2010

Andre Geim
Prize share: 1/2

Photo: U. Montan Konstantin Novoselov Prize share: 1/2

The Nobel Prize in Physics 2010 was awarded jointly to Andre Geim and Konstantin Novoselov "for groundbreaking experiments regarding the two-dimensional material graphene"

Thank You! Questions?