Observation of J/ ψ p Resonances Consistent with Pentaquark States in $\Lambda^0_b \rightarrow J/\psi \ K^-$ p Decays

Michael O'Boyle, Michael Phipps, Ben Prather, Thomas Rito

R. Aaij et al. (LHCb Collaboration) Phys. Rev. Lett. 115, 072001 Published 12 August 2015

How to Build a Hadron: Color Neutrality

- Hadron recipe: color neutrality
 - Baryons (qqq) such that colors cancel
 - Mesons (qq) such that colors cancel
- Using this recipe can create hadrons with more than 3 quarks (Gell-Mann)
 - Tetraquark (qqqq)
 - Pentaquark (qqqqqq)

How should we think of pentaquarks?

Like this?

Or like this?

images: http://press.web.cern. ch/press-releases/2015/07/cernslhcb-experiment-reportsobservation-exotic-pentaquarkparticles

Exotic Hadrons Could Provide Insight into Many Areas

These particles provide experimental insight into QCD

Dynamics of seemingly exotic events are relevant to extreme astronomical objects

Image: www.usqcd.org

Image: news.mit.edu

Pentaquark History: Θ^+ (uudds) Debacle

- From 2003-2009, 10 different experiments saw 3-5 sigma excess in similar region, with public discovery announcement in 2003
- One-by-one data was retracted (except for LEPS, which still sees excess)
- From 2009 issue of Particle Data Group:

The only advance in particle physics thought worthy of mention in the American Institute of Physics "Physics News in 2003" was a false alarm. The whole story—the discoveries themselves, the tidal wave of papers by theorists and phenomenologists that followed, and the eventual "undiscovery" — is a curious episode in the history of science.

image: K. H. Hicks, On the conundrum of the pentaguark, Eur. Phys. J. H 37 (2012)

Lessons from Pentaquark Debacle

- Not all 5σ created equal
 - Excess result of 3 parameters:
 - \circ Signal (S), background (B) and variance (V): S / ($\sqrt{B+V}$)
 - Variance especially prone to underestimates if not careful
- Analysis cuts must be justified independent of effect on final mass spectrum

image: K. H. Hicks, On the conundrum of the pentaquark, Eur. Phys. J. H 37 (2012)

Mass spectrum from DIANA

Tetraquarks and Pentaquarks Prior to this Paper

- Pentaquarks:
 - \circ After Θ^+ retraction, nothing definitive before 2015
- Tetraquarks
 - \circ Z(4430) (c c d u) seen by Belle
 - Confirmed at 13 sigma by LHCb in 2012
 - Other potential resonances observed by Belle, DESY, and Fermilab experiments

LHCb -- "The LHC Beauty Experiment"

- One of four large experiments at LHC
- Data from p-p collisions at 7-8 TeV, representing ~3 fb⁻¹ integrated luminosity
- Primarily a spectrometer, designed to study the bottom quark and its decay products at a few angles

Image: Maximilien Brice (CERN), https://commons.wikimedia.org/wiki/File:CERN_Aerial_View.jpg

Decay of the $\Lambda^0_{\ b}$ May Produce a Pentaquark

- Possible decays of the $\Lambda^0_{\ b}$ baryon are shown below
- Decay may produce a pentaquark consisting of u,u,d,c,c quarks
- Add J/ ψ and p masses, peaks correspond to pentaquark (P $_{c}^{+}$) states
- Pentaquark must be filtered from background Λ^*

Event Selection: Needles in a Haystack

- Events must contain:
 - \circ Each of the particles in the final state: μ^+ , μ^- , p, K^-
 - \circ Muon masses must add to J/ ψ
 - \circ A Λ^0_h candidate of the correct mass and lifetime
- A boosted decision tree (BDT) selects events
 - Simulate many events with all the desired particles
 - Use simulations as a guide to select similar events in the data
- Result: ~26K events of the desired type with only ~5% contamination

Two P⁺ States are Required to Reproduce Curve

Results: New States "Consistent with" Pentaquark

- Excess is consistent with two new pentaguark states
 - \circ Mass distribution is fit best when two P⁺_c states are added, at 4380 and 4450 MeV
 - \circ Mass and width of the two states determined to 9σ and 12σ respectively
- Caveats:
 - No independent verification yet
 - Binding mechanism unknown

Suspected P ⁺ _c	Angular momentum	Mass	Width
P ⁺ _c (4380)	3/2-	(4380 ± 8 ± 29) MeV	(205 ± 18 ± 86) MeV
P ⁺ _c (4450)	5/2 ⁺	(4449.8 ± 1.7 ± 2.5) MeV	(39 ± 5 ± 19) MeV

How LHCb Detects a Pentaquark

Simulations - Physics' Modern Friend

- Simulations used to 'train' the Gradient Boosted Decision Tree (BDTG)

- PYTHIA used to generate hadrons
 - Has been used for a long time, recently converted from Fortran to C++
- Geant4 used to model hadron interactions
 - Used by LHC, MINOS, and T2K
- $2x10^6 \Lambda_b^0 \rightarrow J/\psi K^- p$ events generated
 - 10% efficiency with trigger/reconstruction
 - Specifically removed events with reconstructed mass within 30 MeV of B-meson

Simulations - A Cut Above the Rest

- Simulations can only do what they are programmed to do
 - Fine for processes we understand well
- If a program has an error and we don't witness it, is it wrong?
 - Software has been used for many years, and is well vetted
 - CERN developed the Geant software, and has a lot of data to check for validation
- No human could do the calculations in one lifetime, how can we check?
 - Trust in the algorithm, and the computer will make very few algebra mistakes
 - Computers are essential to the operation of large-scale projects like LHCb

Boosted Decision Trees: Digital Bloodhounds

- Used to classify information
 - "Learning" stage based on simulated data
 - Determines properties by which the signal and background data differ
- Pitfalls:
 - Overtraining can exclude available signal
 - Signal recovered may be biased

Matrix Elements from Helicity Coupling

complex number, will be a fitting parameter

rotation matrix from Λ^* 's frame into K^- p frame

a Λ^* resonance, related to the invariant mass in the K^- p system

Changing frames makes the math simpler!

Used Maximum Likelihood to Fit Mass Distributions

Two independent methods for removing background were used: explicit (cFit) and implicit (sFit)

Note: selection efficiencies based on simulated production and selection rates

Considered Both Likely and Unlikely Λ^* Events

State	J^P	M_0 (MeV)	Γ_0 (MeV)	Number Reduced	Number Extended
$\Lambda(1405)$	1/2-	1405.1+1.3	50.5 ± 2.0	3	4
$\Lambda(1520)$	3/2-	1519.5 ± 1.0	15.6 ± 1.0	5	6
$\Lambda(1600)$	1/2+	1600	150	3	4
$\Lambda(1670)$	1/2-	1670	35	3	4
$\Lambda(1690)$	3/2-	1690	60	5	6
$\Lambda(1800)$	1/2-	1800	300	4	4
$\Lambda(1810)$	1/2+	1810	150	3	4
$\Lambda(1820)$	5/2+	1820	80	1	6
$\Lambda(1830)$	5/2-	1830	95	1	6
$\Lambda(1890)$	3/2+	1890	100	3	6
$\Lambda(2100)$	7/2-	2100	200	1	6
$\Lambda(2110)$	5/2+	2110	200	1 /	6
$\Lambda(2350)$	9/2+	2350	150	0	6
$\Lambda(2585)$?	≈2585	200	0	6

Even Extended Model Fails Without P +

Extended, without pentaquark states

Reduced, with pentaquark states

Citation Analysis

Three types of citations:

- Further analysis by LHCb
 - What is the spin quantum number?
- Theoretical models of the pentaquark
 - O How is the pentaguark bound?
- Springboard into future research
 - Ower of the contract of the

- Total citations: 55 on Google Scholar, 6 on Scopus
- → Article published in August 2015

Areas of Future Research

- Search for 'doubly-heavy' hadron molecules
- Does the P⁺_c have a strange analogue?
- Does the LHCb data support more than 2 pentaquarks?

How is the Pentaquark Bound?

- A molecular state of a meson and a baryon
- Baryons as topological solitons
- Triple string flip-flop and QCD

Backup Slides

Theoretical Explanations

- Baryons as topological solitons
 - http://journals.aps.org/prd/abstract/10.1103/PhysRevD.92.051501 (2)
- Triple string flip-flop and QCD
 - O http://arxiv.org/pdf/1509.04943v1.pdf
- A molecular state of a meson and a baryon
 - http://journals.aps.org/prd/abstract/10.1103/PhysRevD.92.094003 (1)

top: other pentaquark Feynman diagrams (1)

bottom: energy levels for soliton charmed mesons (2)

Springboard

- Search for 'doubly-heavy' hadron molecules
 - http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.115.122001

- Does the P_c have a strange analogue?
 - http://arxiv.org/abs/1510.06648

- Does the LHCb data support more than 2 pentaguarks?
 - http://www.sciencedirect.com/science/article/pii/S0370269315008631

The Channel-Specific Term

$$R_{A_n^*}(m_{Kp}) = B'_{L_{A_0^0}^{A_n^*}}(p, p_0, d) \left(\frac{p}{M_{A_0^0}}\right)^{L_{A_0^0}^{A_0^*}} BW(m_{Kp}|M_0^{A_n^*}, \Gamma_0^{A_n^*}) B'_{L_{A_n^*}}(q, q_0, d) \left(\frac{q}{M_0^{A_n^*}}\right)^{L_{A_n^*}}$$

 $B'_{L}(p, p_{o}, d)$: Blatt-Weisskopf functions, where p is the momentum, p_{o} is the momentum on the mass shell, d is a constant. if $p = p_{o}$, $B'_{L} = 1$. Here, p, p_{o} are the proton momenta; q, q_{o} are the K^{-} momenta.

BW is the relativistic Breit-Wigner Amplitude

L is the orbital angular momentum between the Λ^* and the J/ ψ