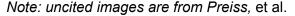

It's a Boson! No wait, it's two Bosons!

Quantum Walks in Optical Lattices

Team 5 (LLLK):
Nicholas Kowalski
David Lee
Ryan Levy
Min Li

The Paper

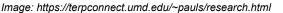
Strongly correlated quantum walks in optical lattices

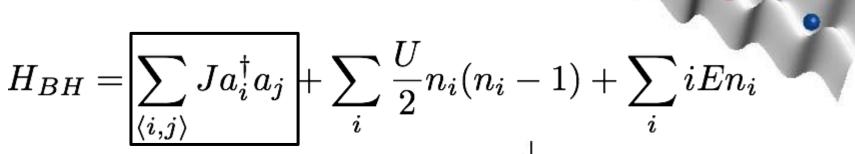

Philipp M. Preiss¹, Ruichao Ma¹, M. Eric Tai¹, Alexander Lukin¹, Matthew Rispoli¹, Philip Zupancic^{1,*}, Yoav Lahini², Rajibul Islam¹, Markus Greiner^{1,†}

+ Author Affiliations

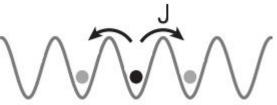
←†Corresponding author. E-mail: greiner@physics.harvard.edu

← * Present address: Institute for Quantum Electronics, ETH Zürich, 8093 Zürich, Switzerland.

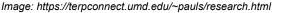

Science 13 Mar 2015: Vol. 347, Issue 6227, pp. 1229-1233 DOI: 10.1126/science.1260364

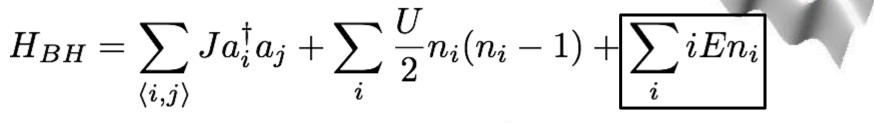


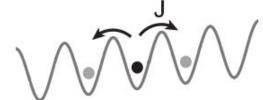
Introduction


- Cold atoms experiments realize toy model Hamiltonians
 - Strong collaborations between theorists and experimentalists
 - Ability to observe weakly interacting many-body systems to strongly correlated dynamics
 - o Bose-Hubbard Model simple theoretical model of interacting bosons on optical lattice
- Can probe interesting physics
 - Many-body localization and dynamics of interacting quantum disordered systems
 - Universal and efficient quantum computation
 - Quantum effects when more than one particle participates in the quantum walk simultaneously - Hanbury Brown and Twiss (HBT) effect

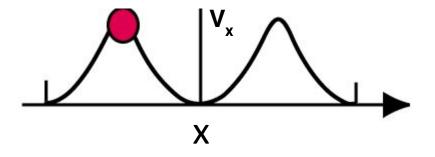
$$H_{BH} = \sum_{\langle i,j \rangle} J a_i^\dagger a_j + \sum_i rac{U}{2} n_i (n_i - 1) + \sum_i i E n_i$$




J-tunneling amplitude between lattice sites


$$H_{BH} = \sum_{\langle i,j \rangle} J a_i^\dagger a_j + \left[\sum_i rac{U}{2} n_i (n_i - 1) + \sum_i i E n_i
ight]$$

U-repulsive on site interaction

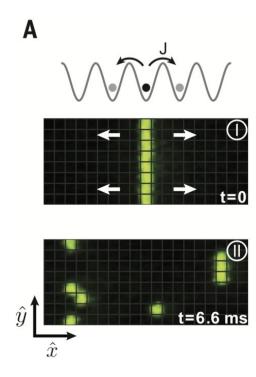


E-energy shift per lattice site

Potential Gradient Induces Bloch Oscillations

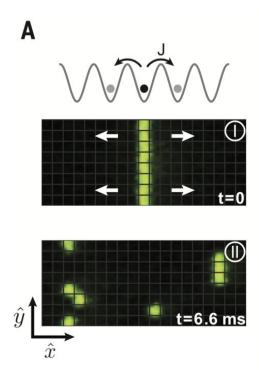
- Oscillations of a quantum particle within a small length scale in position space when exposed to external force
- Dispersion of probability distribution in position space
- Refocuses to initial position after one oscillation period

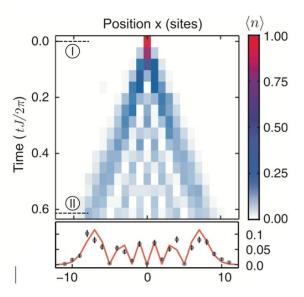
Image: Nikita Butakov


Experimental Setup

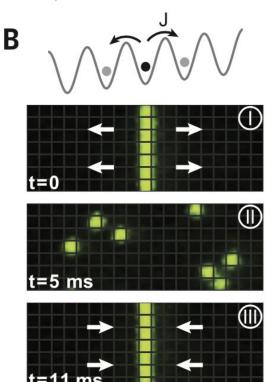
Ultracold Bosonic ⁸⁷Rb atoms in an optical lattice

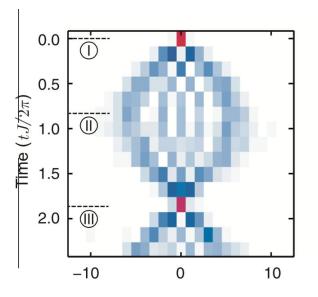
- Atoms initially prepared in 2D Mott Insulator (1-2 atoms per site)
- Potential is flattened in one direction to allow quantum walk (performed at reduced lattice depth V_v)
- Fluorescence imaging in deep optical lattice
- Pairs separated by magnetic field along direction of quantum walk prior to imaging


Single Particle Quantum Walk

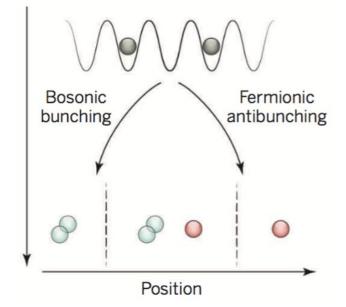

- A: Without potential
 - Particles spread linearly
 - Interference leads to coherent wavefront rather than Gaussian like classical walk

Single Particle Quantum Walk

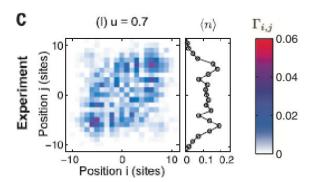

- A: Without potential
 - Particles spread linearly
 - Interference leads to coherent wavefront rather than Gaussian like classical walk

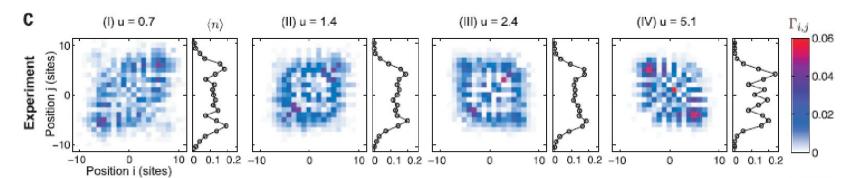


Single Particle Quantum Walk

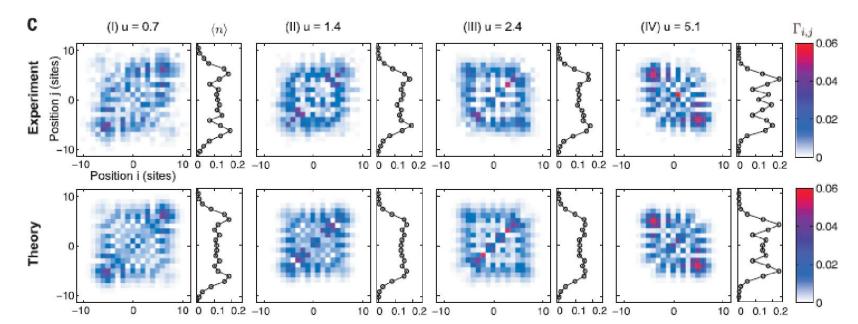

- B: With potential
 - Particles undergo Bloch oscillation
 - Particles localized to small volume

Two-Particle Quantum Walk

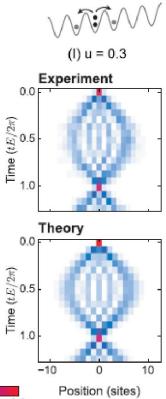

- Particles undergo Hanbury Brown and Twiss interference
- Bosons add constructively in close proximity
 - Leads to bunching
- Fermions add destructively
 - Leads to antibunching
- With strong repulsive interactions, bosonic particle pairs undergo "fermionization"


Two-Particle Fermionization

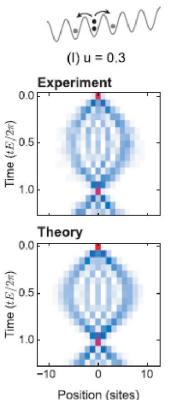
- Two particles starting in adjacent sites $a_0^{\dagger}a_1^{\dagger}|0\rangle$
- As interaction strength increases, repulsive interactions compete with and overcome HBT interference


Two-Particle Fermionization

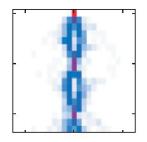
- Two particles starting in adjacent sites $a_0^{\dagger}a_1^{\dagger}|0\rangle$
- As interaction strength increases, repulsive interactions compete with and overcome HBT interference

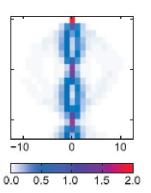

Two-Particle Fermionization

- Two particles starting in adjacent sites $a_0^{\dagger}a_1^{\dagger}|0\rangle$
- As interaction strength increases, repulsive interactions compete with and overcome HBT interference

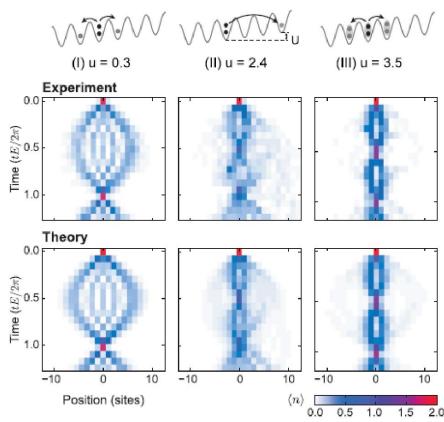

Strong Interactions: Repulsively Bound Pairs

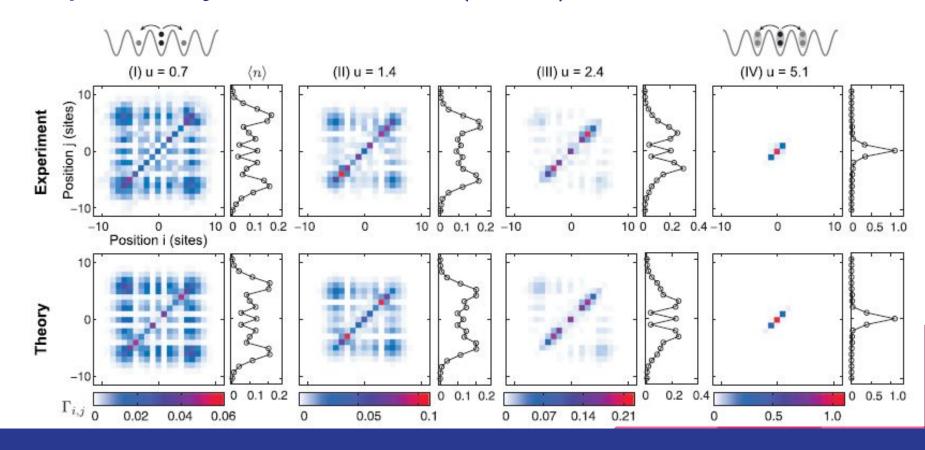
- Two particles starting in same state $(1/\sqrt{2})a_0^{\dagger}a_0^{\dagger}|0\rangle$
- For weak interactions, particles act independently




Strong Interactions: Repulsively Bound Pairs

- Two particles starting in same state $(1/\sqrt{2})a_0^{\dagger}a_0^{\dagger}|0\rangle$
- For weak interactions, particles act independently
- For strong interactions, particles move together as a repulsively bound pair





Strong Interactions: Repulsively Bound Pairs

- Two particles starting in same state $(1/\sqrt{2})a_0^{\dagger}a_0^{\dagger}|0\rangle$
- For weak interactions, particles act independently
- For strong interactions, particles move together as a repulsively bound pair
- Complicated dynamics in intermediate regime

Repulsively Bound Pairs (cont.)

Citation Analysis

- Paper Birthday: March 2015 (~1 year 9 months)
- 59 citations
 - ~50% experimental, ~50% theoretical
 - o 3 papers specifically proposed new methods of studying similar systems
 - 4 papers from the same group
 - Many papers that provided more complex conditions:
 - cylindrical environments
 - fermionic atoms (Ytterbium atoms!)
 - polarized atoms

Citation Analysis - Notable Papers

- Most cited citing paper:
 - Site-Resolved Imaging of Fermionic ⁶Li in an Optical Lattice

Maxwell F. Parsons, Florian Huber, Anton Mazurenko, Christie S. Chiu, Widagdo Setiawan, Katherine Wooley-Brown, Sebastian Blatt, and <u>Markus Greiner</u> Phys. Rev. Lett. **114**, 213002 – Published 28 May 2015

- 34 citations and same corresponding author
- Many more Lithium papers among citing (common cold atom)
- Extra interesting paper:

Quantum coherent oscillations in the early universe

Igor Pikovski and Abraham Loeb Phys. Rev. D **93**, 101302(R) – Published 25 May 2016

Paper Critique

Good:

- Really great data!
- Well polished paper
- Publicly accessible abstract included

Bad:

- Lots of acronyms with little help for those outside the field
- Does not describe methods in great detail (nor citations)

Conclusion

- Preiss, et al., developed a system to create 2-particle bosonic random walks in an optical lattice
- This system matched theoretical predictions and principal effects both non-interacting and a strongly correlated system
 - Observed Bloch oscillations and HBT effects
- This technique provides access to the exploration of fundamental condensed matter systems
 - Ex: Microscopics of complicated systems, such as ones with disorder and rapid changes (quench)