It's a Boson! No wait,

it's two Bosons!
Quantum Walks in Optical Lattices
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Introduction

e (Cold atoms experiments realize toy model Hamiltonians
o Strong collaborations between theorists and experimentalists
o  Ability to observe weakly interacting many-body systems to strongly correlated dynamics
o Bose-Hubbard Model - simple theoretical model of interacting bosons on optical lattice

e Can probe interesting physics
o Many-body localization and dynamics of interacting quantum disordered systems
o Universal and efficient quantum computation
o Quantum effects when more than one particle participates in the quantum walk
simultaneously - Hanbury Brown and Twiss (HBT) effect




Hamiltonian for interacting
bosons on a lattice.

Image: https://terpconnect.umd.edu/~pauls/research.html



Hamiltonian for interacting
bosons on a lattice.

Hpn = Z Jaja; it Z gm(m — 1)+ Zz}_@’n1 "

(2,5) g g

J-tunneling amplitude
between lattice sites

Image: https://terpconnect.umd.edu/~pauls/research.html



Hamiltonian for interacting
bosons on a lattice.

Hpg = ZJagaj + Z gni(ﬂi _ 1) + ZZEHE ’ |

(4,5) v

U-repulsive on site interaction

Image: https://terpconnect.umd.edu/~pauls/research.html



Hamiltonian for interacting
bosons on a lattice.

U
Hpy = ZJ(II(I}' —|—Z Em(m — 1) —+
(4,9) ¢

E-energy shift
per lattice site ¥

Image: https://terpconnect.umd.edu/~pauls/research.html



Potential Gradient Induces
Bloch Oscillations >

e Oscillations of a quantum particle within
a small length scale in position space when
exposed to external force
e Dispersion of probability distribution in position space

e Refocuses to initial position after one oscillation period

Image: Nikita Butakov



Experimental Setup - ,
g\ o}
e Ultracold Bosonic 8’Rb atoms in an optical lattice

e Atoms initially prepared in 2D Mott Insulator (1-2 atoms per site)

e Potential is flattened in one direction to allow quantum walk (performed at
reduced lattice depth V)

e Fluorescence imaging in deep optical lattice

e Pairs separated by magnetic field along direction of
quantum walk prior to imaging




Single Particle Quantum Walk

* A: Without potential I~
* Particles spread linearly o/ \o/ \o

* Interference leads to coherent
wavefront rather than Gaussian
like classical walk




Single Particle Quantum Walk
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Single Particle Quantum Walk
J

B
* B: With potential

* Particles undergo
Bloch oscillation

* Particles localized to
small volume
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Two-Particle Quantum Walk

* Particles undergo Hanbury Brown
and Twiss interference

* Bosons add constructively in close
proximity
* Leads to bunching
* Fermions add destructively
* Leads to antibunching
* With strong repulsive interactions,

bosonic particle pairs undergo
“fermionization”
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Two-Particle Fermionization

 Two particles starting in adjacent sites ajal|0)

* As interaction strength increases, repulsive interactions compete with
and overcome HBT interference
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Two-Particle Fermionization

 Two particles starting in adjacent sites aal|0)

* As interaction strength increases, repulsive interactions compete with
and overcome HBT interference
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Two-Particle Fermionization

« Two particles starting in adjacent sites alaf|0)

* As interaction strength increases, repulsive interactions compete with
and overcome HBT interference
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Strong Interactions: Repulsively
Bound Pairs
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Strong Interactions: Repulsively
Bound Pairs
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Strong Interactions: Repulsively

Bound Pairs

* Two particles starting in same
state (1/\/§)aga£|0)

* For weak interactions, particles
act independently

* For strong interactions, particles
move together as a repulsively
bound pair

* Complicated dynamics in
intermediate regime
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Repulsively Bound Pairs (cont.)

Experiment

Theory

T e T
L] L] ] L
- L] o L] ] L]
{I}Iu 0.7 (MMu=24 (Myu=51
_1of’ ' 8 1 F '
g | W __,l.
Z C
S = —
B &
g l";.irl
=10 , N . .1 ot ) R N ] . . s L
10 D 100 0102 =10 0 10 0 &1 02 =10 0 100 I:IE 1.4 =10 0 10 0 0510
Paosition i {sites)
10" ' ' 1 10 11
i . }J
i - 8
Of == om .: - ™ {1=e { | .f _ .::'__:_g_
e &
IERP
10} .

r’-‘D

0.02 0.04

0.06

0.05

0.1

0

0.07 014 021

0.5

1.0

C— 0 0 02 :—0 T2 C—— ng_n 05 10




Citation Analysis

e Paper Birthday: March 2015 (~1 year 9 months)

e 59 citations
o ~50% experimental, ~50% theoretical
o 3 papers specifically proposed new methods of studying similar systems
o 4 papers from the same group
o Many papers that provided more complex conditions:
m cylindrical environments

m fermionic atoms (Ytterbium atoms!)

m polarized atoms




Citation Analysis - Notable Papers

e Most cited citing paper:
° Site-Resolved Imaging of Fermionic ®Liin an Optical Lattice

Maxwell F. Parsons, Florian Huber, Anton Mazurenko, Christie S. Chiu, Widagdo Setiawan, Katherine Wooley-
Brown, Sebastian Blatt, and Markus Greiner

Phys. Rev. Lett. 114, 213002 - Published 28 May 2015

o 34 citations and same corresponding author
o Many more Lithium papers among citing (common cold atom)

e Extra interesting paper:

Quantum coherent oscillations in the early universe

Igor Pikovski and Abraham Loeb
Phys. Rev. D 93, 101302(R) — Published 25 May 2016



Paper Critique

e Good:

o Really great data!
o  Well polished paper

o Publicly accessible abstract included
e Bad:

o Lots of acronyms with little help for those outside the field

o Does not describe methods in great detail (nor citations)




Conclusion

e Preiss, et al., developed a system to create 2-particle bosonic random walks in
an optical lattice
e This system matched theoretical predictions and principal effects both

non-interacting and a strongly correlated system
o Observed Bloch oscillations and HBT effects

e This technique provides access to the exploration of fundamental condensed

matter systems

o Ex: Microscopics of complicated systems, such as ones with disorder and rapid changes
(quench)




